我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python 进程池pool简单实例

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python 进程池pool简单实例

进程池:   

   在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间。当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,十几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,此时可以发挥进程池的功效。  

    Pool可以提供指定数量的进程供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来它。

如何使用进程池?

1 如何使用进程池执行函数?

a 不返回参数

# -*- coding: UTF-8 -*-
from multiprocessing import Process,Manager,Lock,Pool

#要在调用进程池执行的函数
def sayHi(num):
  print "def print result:",num
#进程池最大运行数
p = Pool(processes=4)
#模拟并发调用线程池
for i in range(10):
  p.apply_async(sayHi,[i])
  
执行结果:
# python demo.py
def print result: 0
def print result: 1
def print result: 2
def print result: 3
def print result: 4
def print result: 5

  • apply_async(func[, args[, kwds[, callback]]]) 它是非阻塞,apply(func[, args[, kwds]])是阻塞的(理解区别,看例1例2结果区别)


2 进程池使用之坑~~

# -*- coding: UTF-8 -*-
from multiprocessing import Process,Manager,Lock,Pool

#要在调用进程池执行的函数
def sayHi(num):
  print "def print result:",num
#进程池最大运行数
p = Pool(processes=4)
#模拟并发调用线程池
for i in range(10):
  p.apply_async(sayHi,[i])

执行结果:

[root@python thread]# python pool.py
def print result: 0
def print result: 1
def print result: 2
def print result: 3
def print result: 4
def print result: 5
[root@python thread]# python pool.py
def print result: 0
def print result: 1
def print result: 2
def print result: 3
def print result: 4
def print result: 5
def print result: 6
[root@python thread]# python pool.py
[root@python thread]# python pool.py
[root@python thread]# python pool.py

     从上面的例子可以看出,我们连续执行pool.py脚本,后面的脚本却没有输出应有的结果,为什么?

     首先对上列程序进行细微调整:

# -*- coding: UTF-8 -*-
from multiprocessing import Process,Manager,Lock,Pool
def sayHi(num):
  print "def print result:",num
p = Pool(processes=4)
for i in range(10):
  p.apply_async(sayHi,[i])
p.close()
p.join() #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束

返回结果:

[root@python thread]# python pool.py
def print result: 0
def print result: 1
def print result: 2
def print result: 3
def print result: 4
def print result: 5
def print result: 6
def print result: 9
def print result: 8
def print result: 7
[root@python thread]# python pool.py
def print result: 0
def print result: 1
def print result: 2
def print result: 4
def print result: 3
def print result: 5
def print result: 6
def print result: 7
def print result: 8
def print result: 9
[root@python thread]# python pool.py
def print result: 0
def print result: 1
def print result: 2
def print result: 3
def print result: 4
def print result: 5
def print result: 7
def print result: 8
def print result: 9

   这次执行完全没有问题,那么为何加入close()和join()方法后就会执行正确呢?

    

  • close()    关闭pool,使其不在接受新的任务。

  • terminate()    结束工作进程,不在处理未完成的任务。

  • join()    主进程阻塞,等待子进程的退出, join方法要在close或terminate之后使用。

   原来重点是join方法,如果不阻塞主进程,会导致主进程往下运行到结束,子进程都还没有返回结果

   

3   进程池调用后返回参数

# -*- coding: UTF-8 -*-
from multiprocessing import Process,Manager,Lock,Pool
def sayHi(num):
  return num*num
p = Pool(processes=4)
#申明一个列表,用来存放各进程返回的结果
result_list =[]

for i in range(10):
  result_list.append(p.apply_async(sayHi,[i]))  #将返回结果append到列表中

#循环读出列表返回的结果
for res in result_list:
  print "the result:",res.get()

  :get()函数得出每个返回结果的值

执行结果:

[root@python thread]# python pool.py
the result: 0
the result: 1
the result: 4
the result: 9
the result: 16
the result: 25
the result: 36
the result: 49
the result: 64
the result: 81
[root@python thread]# python pool.py
the result: 0
the result: 1
the result: 4
the result: 9
the result: 16
the result: 25
the result: 36
the result: 49
the result: 64
the result: 81
[root@python thread]# python pool.py
the result: 0
the result: 1
the result: 4
the result: 9
the result: 16
the result: 25
the result: 36
the result: 49
the result: 64

    将结果通过return返回后,写入列表后,然后再循环读出,你会发现及时不需要join方法,脚本仍然能正常显示。

    但是为了代码更加稳定,还是建议增加主进程阻塞(除非主进程需要等待子进程返回结果):

# -*- coding: UTF-8 -*-
from multiprocessing import Process,Manager,Lock,Pool
def sayHi(num):
  return num*num
p = Pool(processes=4)
#申明一个列表,用来存放各进程返回的结果
result_list =[]

for i in range(10):
  result_list.append(p.apply_async(sayHi,[i]))  #将返回结果append到列表中
  
p.close()
p.join() #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
#循环读出列表返回的结果
for res in result_list:
  print "the result:",res.get()




免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python 进程池pool简单实例

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python 进程池pool简单实例

进程池:      在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间。当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,十
2023-01-31

python进程池的简单实现

本文主要介绍了python进程池的简单实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2023-03-13

Python 多进程并发操作中进程池Pool的实例

在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间。当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,10几个还好,但如果是
2022-06-04

python中进程池Pool怎么初始化

本文小编为大家详细介绍“python中进程池Pool怎么初始化”,内容详细,步骤清晰,细节处理妥当,希望这篇“python中进程池Pool怎么初始化”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。说明1、初始化Po
2023-06-30

python 进程池的简单使用方法

回到python,用一下python的进程池。记得之前面试的时候,面试官问:你知道进程池的默认参数吗? 我没有回答上来,后来才知道,是有默认参数的。下面就看看它的默认参数1. 不加参数from multiprocessing.pool im
2023-01-30

Linux C线程池简单实现实例

Linux C线程池 三个文件 1 tpool.htypedef struct tpool_work { void (*routine)(void *); void *arg; struct tpool_work
2022-06-04

怎么在python中初始化进程池Pool

本篇文章为大家展示了怎么在python中初始化进程池Pool,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。python的数据类型有哪些?python的数据类型:1. 数字类型,包括int(整型)、l
2023-06-14

Python进程池与进程锁实例分析

本篇内容主要讲解“Python进程池与进程锁实例分析”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Python进程池与进程锁实例分析”吧!进程池什么是进程池上一章节关于进程的问题我们提到过,进程
2023-06-29

Python多进程库multiprocessing中进程池Pool类的使用详解

问题起因 最近要将一个文本分割成好几个topic,每个topic设计一个regressor,各regressor是相互独立的,最后汇总所有topic的regressor得到总得预测结果。没错!类似bagging ensemble!只是我没有
2022-06-04

用Python实现一个简单的线程池

线程池的概念是什么?在面向对象编程中,创建和销毁对象是很费时间的,因为创建一个对象要获取内存资源或者其它更多资源。在Java中更是 如此,虚拟机将试图跟踪每一个对象,以便能够在对象销毁后进行垃圾回收。所以提高服务程序效率的一个手段就是尽可能
2023-01-31

python 简单搭建阻塞式单进程,多进程,多线程服务的实例

我们可以通过这样子的方式去理解apache的工作原理 1 单进程TCP服务(堵塞式) 这是最原始的服务,也就是说只能处理个客户端的连接,等当前客户端关闭后,才能处理下个客户端,是属于阻塞式等待from socket import * ser
2022-06-04

python进程池Pool中apply方法与apply_async方法的区别

Python进程池中的apply方法同步阻塞任务,立即返回结果并阻塞主进程。apply_async方法异步非阻塞,返回AsyncResult对象,主进程可继续运行。apply适合需要立即处理结果的任务,而apply_async适合并行执行大量任务并支持回调和Future功能。
python进程池Pool中apply方法与apply_async方法的区别
2024-04-02

php如何让Swoole/Pool进程池实现Redis持久连接

本篇内容主要讲解“php如何让Swoole/Pool进程池实现Redis持久连接”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“php如何让Swoole/Pool进程池实现Redis持久连接”吧!
2023-07-05

python实现linux下的简单进程监

最近看writeup看的有点头疼,深深感受到了自己的无知。确实还需要学习很多东西、一点一点的积累!加油!python确实很强大哦~,要想学好python就得自己多动手堆代码! 无聊写了一个进程监控的脚本,就当做是练习。其实最终实现的功能也很
2023-01-31

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录