我的编程空间,编程开发者的网络收藏夹
学习永远不晚

R语言与多元线性回归分析计算案例

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

R语言与多元线性回归分析计算案例

计算实例

例 6.9 某大型牙膏制造企业为了更好地拓展产品市场,有效地管理库存,公司董事会要求销售部门根据市场调查,找出公司生产的牙膏销售量与销售价格,广告投入等之间的关系,从而预测出在不同价格和广告费用下销售量。为此,销售部门的研究人员收集了过去30个销售周期(每个销售周期为4周)公司生产的牙膏的销售量、销售价格、投入的广告费用,以及周期其他厂家生产同类牙膏的市场平均销售价格,如表6.4所示。

试根据这些数据建立一个数学模型,分析牙膏销售量与其他因素的关系,为制订价格策略和广告投入策略提供数量依据。

image

image

分析

由于牙膏是生活的必需品,对于大多数顾客来说,在购买同类牙膏时,更多的会关心不同品牌之间的价格差,而不是它们的价格本身。因此,在研究各个因素对销售量的影响时,用价格差代替公司销售价格和其他厂家平均价格更为合适。

模型的建立与求解

记牙膏销售量为Y,价格差为X1,公司的广告费为X2,假设基本模型为线性模型:

image

输入数据,调用R软件中的lm()函数求解,并用summary()显示计算结果(程序名:exam0609.R)

image

计算结果通过线性回归系数检验和回归方程检验,由此得到销售量与价格差与广告费之间的关系为:

image

模型的进一步分析

为进一步分析回归模型,我们画出y与x1和y与x2散点图。从散点图上可以看出,对于y与x1,用直线拟合较好。而对于y与x2,则用二次曲线拟合较好,如下图:

绘制x1与y的散点图和回归直线

image

绘制x2与y的散点图和回归曲线

image

其中 I(X2^2),表示模型中X2的平方项,及X22,从上图中,将销售量模型改为:

image

似乎更合理,我们做相应的回归分析:

image

此时,我们发现,模型残差的标准差Residual standard error有所下降,相关系数的平方Multiple R-squared有所上升,这说明模型修正的是合理的。但同时也出现了一个问题,就是对于β2的P-值>0.05。为进一步分析,做β的区间估计。

image

如上错误出现????!!!!直接引用结果如下:

image

β2的区间估计为[ –7.49886317, 0.1076898 ],它包含了0,也就是说,β2的值可能为0. 因此,去掉X2的一次项,在进行分析:

image

此模型虽然通过了F检验和T检验,但与上一模型对比来看,Residual standard error上升,Multiple R-squared下降。这又是此模型的不足之处。

在做进一步的修正,考虑X1和X2交互作用,及模型为:

image

image

模型通过T检验和F检验,并且Residual standard error减少,Multiple R-squared增加。因此,最终模型选为:

image

 到此这篇关于R语言与多元线性回归分析计算案例的文章就介绍到这了,更多相关R语言与多元线性回归内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

R语言与多元线性回归分析计算案例

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

使用R语言与多元线性回归分析计算的示例

这篇文章主要为大家展示了“使用R语言与多元线性回归分析计算的示例”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“使用R语言与多元线性回归分析计算的示例”这篇文章吧。计算实例例 6.9 某大型牙膏制
2023-06-20

如何在R语言项目中实现多元线性回归

这期内容当中小编将会给大家带来有关如何在R语言项目中实现多元线性回归,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。输入数据先把数据用excel保存为csv格式放在”我的文档”文件夹打开R软件,不用新建,直
2023-06-08

R语言多元线性回归是什么及如何实现

这篇文章主要介绍“R语言多元线性回归是什么及如何实现”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“R语言多元线性回归是什么及如何实现”文章能帮助大家解决问题。一、模型简介一元线性回归是一个主要影响因
2023-07-02

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录