我的编程空间,编程开发者的网络收藏夹
学习永远不晚

es详解-原理-es原理之索引文档流程详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

es详解-原理-es原理之索引文档流程详解

ElasticSearch中最重要原理是文档的索引和文档的读取,本文带你理解ES文档的索引过程。

文档索引步骤顺序

单个文档

新建单个文档所需要的步骤顺序:

  1. 客户端向 Node 1 发送新建、索引或者删除请求。
  2. 节点使用文档的 _id 确定文档属于分片 0 。请求会被转发到 Node 3,因为分片 0 的主分片目前被分配在 Node 3 上。
  3. Node 3 在主分片上面执行请求。如果成功了,它将请求并行转发到 Node 1 和 Node 2 的副本分片上。一旦所有的副本分片都报告成功, Node 3 将向协调节点报告成功,协调节点向客户端报告成功。

多个文档

使用 bulk 修改多个文档步骤顺序:

  1. 客户端向 Node 1 发送 bulk 请求。
  2. Node 1 为每个节点创建一个批量请求,并将这些请求并行转发到每个包含主分片的节点主机。
  3. 主分片一个接一个按顺序执行每个操作。当每个操作成功时,主分片并行转发新文档(或删除)到副本分片,然后执行下一个操作。 一旦所有的副本分片报告所有操作成功,该节点将向协调节点报告成功,协调节点将这些响应收集整理并返回给客户端。

文档索引过程详解

整体的索引流程

先看下整体的索引流程

  • 协调节点默认使用文档ID参与计算(也支持通过routing),以便为路由提供合适的分片。
shard = hash(document_id) % (num_of_primary_shards)
  • 当分片所在的节点接收到来自协调节点的请求后,会将请求写入到Memory Buffer,然后定时(默认是每隔1秒)写入到Filesystem Cache,这个从Momery Buffer到Filesystem Cache的过程就叫做refresh;
  • 当然在某些情况下,存在Momery Buffer和Filesystem Cache的数据可能会丢失,ES是通过translog的机制来保证数据的可靠性的。其实现机制是接收到请求后,同时也会写入到translog中,当Filesystem cache中的数据写入到磁盘中时,才会清除掉,这个过程叫做flush。
  • 在flush过程中,内存中的缓冲将被清除,内容被写入一个新段,段的fsync将创建一个新的提交点,并将内容刷新到磁盘,旧的translog将被删除并开始一个新的translog。 flush触发的时机是定时触发(默认30分钟)或者translog变得太大(默认为512M)时。

分步骤看数据持久化过程

通过分步骤看数据持久化过程write -> refresh -> flush -> merge

  • write 过程

一个新文档过来,会存储在 in-memory buffer 内存缓存区中,顺便会记录 Translog(Elasticsearch 增加了一个 translog ,或者叫事务日志,在每一次对 Elasticsearch 进行操作时均进行了日志记录)。

这时候数据还没到 segment ,是搜不到这个新文档的。数据只有被 refresh 后,才可以被搜索到。

  • refresh 过程

refresh 默认 1 秒钟,执行一次上图流程。ES 是支持修改这个值的,通过 index.refresh_interval 设置 refresh (冲刷)间隔时间。refresh 流程大致如下:

  1. in-memory buffer 中的文档写入到新的 segment 中,但 segment 是存储在文件系统的缓存中。此时文档可以被搜索到
  2. 最后清空 in-memory buffer。注意: Translog 没有被清空,为了将 segment 数据写到磁盘
  3. 文档经过 refresh 后, segment 暂时写到文件系统缓存,这样避免了性能 IO 操作,又可以使文档搜索到。refresh 默认 1 秒执行一次,性能损耗太大。一般建议稍微延长这个 refresh 时间间隔,比如 5 s。因此,ES 其实就是准实时,达不到真正的实时。
  • flush 过程

每隔一段时间—​例如 translog 变得越来越大—​索引被刷新(flush);一个新的 translog 被创建,并且一个全量提交被执行

上个过程中 segment 在文件系统缓存中,会有意外故障文档丢失。那么,为了保证文档不会丢失,需要将文档写入磁盘。那么文档从文件缓存写入磁盘的过程就是 flush。写入磁盘后,清空 translog。具体过程如下:

  1. 所有在内存缓冲区的文档都被写入一个新的段。
  2. 缓冲区被清空。
  3. 一个Commit Point被写入硬盘。
  4. 文件系统缓存通过 fsync 被刷新(flush)。
  5. 老的 translog 被删除。
  • merge 过程

由于自动刷新流程每秒会创建一个新的段 ,这样会导致短时间内的段数量暴增。而段数目太多会带来较大的麻烦。 每一个段都会消耗文件句柄、内存和cpu运行周期。更重要的是,每个搜索请求都必须轮流检查每个段;所以段越多,搜索也就越慢。

Elasticsearch通过在后台进行Merge Segment来解决这个问题。小的段被合并到大的段,然后这些大的段再被合并到更大的段。

当索引的时候,刷新(refresh)操作会创建新的段并将段打开以供搜索使用。合并进程选择一小部分大小相似的段,并且在后台将它们合并到更大的段中。这并不会中断索引和搜索。

一旦合并结束,老的段被删除:

  1. 新的段被刷新(flush)到了磁盘。 ** 写入一个包含新段且排除旧的和较小的段的新提交点。
  2. 新的段被打开用来搜索。
  3. 老的段被删除。

合并大的段需要消耗大量的I/O和CPU资源,如果任其发展会影响搜索性能。Elasticsearch在默认情况下会对合并流程进行资源限制,所以搜索仍然 有足够的资源很好地执行。

深入ElasticSearch索引文档的实现机制

提示

作为选读内容。

写操作的关键点

在考虑或分析一个分布式系统的写操作时,一般需要从下面几个方面考虑:

  • 可靠性:或者是持久性,数据写入系统成功后,数据不会被回滚或丢失。
  • 一致性:数据写入成功后,再次查询时必须能保证读取到最新版本的数据,不能读取到旧数据。
  • 原子性:一个写入或者更新操作,要么完全成功,要么完全失败,不允许出现中间状态。
  • 隔离性:多个写入操作相互不影响。
  • 实时性:写入后是否可以立即被查询到。
  • 性能:写入性能,吞吐量到底怎么样。

Elasticsearch作为分布式系统,也需要在写入的时候满足上述的四个特点,我们在后面的写流程介绍中会涉及到上述四个方面。

接下来,我们一层一层剖析Elasticsearch内部的写机制。

Lucene的写

众所周知,Elasticsearch内部使用了Lucene完成索引创建和搜索功能,Lucene中写操作主要是通过IndexWriter类实现,IndexWriter提供三个接口:

 public long addDocument();
 public long updateDocuments();
 public long deleteDocuments();

通过这三个接口可以完成单个文档的写入,更新和删除功能,包括了分词,倒排创建,正排创建等等所有搜索相关的流程。只要Doc通过IndesWriter写入后,后面就可以通过IndexSearcher搜索了,看起来功能已经完善了,但是仍然有一些问题没有解:

  • 上述操作是单机的,而不是我们需要的分布式。
  • 文档写入Lucene后并不是立即可查询的,需要生成完整的Segment后才可被搜索,如何保证实时性?
  • Lucene生成的Segment是在内存中,如果机器宕机或掉电后,内存中的Segment会丢失,如何保证数据可靠性 ?
  • Lucene不支持部分文档更新,但是这又是一个强需求,如何支持部分更新?

上述问题,在Lucene中是没有解决的,那么就需要Elasticsearch中解决上述问题。

我们再来看Elasticsearch中的写机制。

Elasticsearch的写

Elasticsearch采用多Shard方式,通过配置routing规则将数据分成多个数据子集,每个数据子集提供独立的索引和搜索功能。当写入文档的时候,根据routing规则,将文档发送给特定Shard中建立索引。这样就能实现分布式了。

此外,Elasticsearch整体架构上采用了一主多副的方式:

每个Index由多个Shard组成,每个Shard有一个主节点和多个副本节点,副本个数可配。但每次写入的时候,写入请求会先根据_routing规则选择发给哪个Shard,Index Request中可以设置使用哪个Filed的值作为路由参数,如果没有设置,则使用Mapping中的配置,如果mapping中也没有配置,则使用_id作为路由参数,然后通过_routing的Hash值选择出Shard(在OperationRouting类中),最后从集群的Meta中找出出该Shard的Primary节点。

请求接着会发送给Primary Shard,在Primary Shard上执行成功后,再从Primary Shard上将请求同时发送给多个Replica Shard,请求在多个Replica Shard上执行成功并返回给Primary Shard后,写入请求执行成功,返回结果给客户端。

这种模式下,写入操作的延时就等于latency = Latency(Primary Write) + Max(Replicas Write)。只要有副本在,写入延时最小也是两次单Shard的写入时延总和,写入效率会较低,但是这样的好处也很明显,避免写入后,单机或磁盘故障导致数据丢失,在数据重要性和性能方面,一般都是优先选择数据,除非一些允许丢数据的特殊场景。

采用多个副本后,避免了单机或磁盘故障发生时,对已经持久化后的数据造成损害,但是Elasticsearch里为了减少磁盘IO保证读写性能,一般是每隔一段时间(比如5分钟)才会把Lucene的Segment写入磁盘持久化,对于写入内存,但还未Flush到磁盘的Lucene数据,如果发生机器宕机或者掉电,那么内存中的数据也会丢失,这时候如何保证?

对于这种问题,Elasticsearch学习了数据库中的处理方式:增加CommitLog模块,Elasticsearch中叫TransLog。

在每一个Shard中,写入流程分为两部分,先写入Lucene,再写入TransLog。

写入请求到达Shard后,先写Lucene文件,创建好索引,此时索引还在内存里面,接着去写TransLog,写完TransLog后,刷新TransLog数据到磁盘上,写磁盘成功后,请求返回给用户。这里有几个关键点:

  • 一是和数据库不同,数据库是先写CommitLog,然后再写内存,而Elasticsearch是先写内存,最后才写TransLog,一种可能的原因是Lucene的内存写入会有很复杂的逻辑,很容易失败,比如分词,字段长度超过限制等,比较重,为了避免TransLog中有大量无效记录,减少recover的复杂度和提高速度,所以就把写Lucene放在了最前面。
  • 二是写Lucene内存后,并不是可被搜索的,需要通过Refresh把内存的对象转成完整的Segment后,然后再次reopen后才能被搜索,一般这个时间设置为1秒钟,导致写入Elasticsearch的文档,最快要1秒钟才可被从搜索到,所以Elasticsearch在搜索方面是NRT(Near Real Time)近实时的系统。
  • 三是当Elasticsearch作为NoSQL数据库时,查询方式是GetById,这种查询可以直接从TransLog中查询,这时候就成了RT(Real Time)实时系统。四是每隔一段比较长的时间,比如30分钟后,Lucene会把内存中生成的新Segment刷新到磁盘上,刷新后索引文件已经持久化了,历史的TransLog就没用了,会清空掉旧的TransLog。

上面介绍了Elasticsearch在写入时的两个关键模块,Replica和TransLog,接下来,我们看一下Update流程:

Lucene中不支持部分字段的Update,所以需要在Elasticsearch中实现该功能,具体流程如下:

  • 收到Update请求后,从Segment或者TransLog中读取同id的完整Doc,记录版本号为V1。
  • 将版本V1的全量Doc和请求中的部分字段Doc合并为一个完整的Doc,同时更新内存中的VersionMap。获取到完整Doc后,Update请求就变成了Index请求。 加锁。
  • 再次从versionMap中读取该id的最大版本号V2,如果versionMap中没有,则从Segment或者TransLog中读取,这里基本都会从versionMap中获取到。
  • 检查版本是否冲突(V1==V2),如果冲突,则回退到开始的“Update doc”阶段,重新执行。如果不冲突,则执行最新的Add请求。
  • 在Index Doc阶段,首先将Version + 1得到V3,再将Doc加入到Lucene中去,Lucene中会先删同id下的已存在doc id,然后再增加新Doc。写入Lucene成功后,将当前V3更新到versionMap中。
  • 释放锁,部分更新的流程就结束了。

介绍完部分更新的流程后,大家应该从整体架构上对Elasticsearch的写入有了一个初步的映象,接下来我们详细剖析下写入的详细步骤。

Elasticsearch写入请求类型

Elasticsearch中的写入请求类型,主要包括下列几个:Index(Create),Update,Delete和Bulk,其中前3个是单文档操作,后一个Bulk是多文档操作,其中Bulk中可以包括Index(Create),Update和Delete。

在6.0.0及其之后的版本中,前3个单文档操作的实现基本都和Bulk操作一致,甚至有些就是通过调用Bulk的接口实现的。估计接下来几个版本后,Index(Create),Update,Delete都会被当做Bulk的一种特例化操作被处理。这样,代码和逻辑都会更清晰一些。

下面,我们就以Bulk请求为例来介绍写入流程。

  • 红色:Client Node。
  • 绿色:Primary Node。
  • 蓝色:Replica Node。

Client Node

Client Node 也包括了前面说过的Parse Request,这里就不再赘述了,接下来看一下其他的部分。

  1. Ingest Pipeline

在这一步可以对原始文档做一些处理,比如HTML解析,自定义的处理,具体处理逻辑可以通过插件来实现。在Elasticsearch中,由于Ingest Pipeline会比较耗费CPU等资源,可以设置专门的Ingest Node,专门用来处理Ingest Pipeline逻辑。

如果当前Node不能执行Ingest Pipeline,则会将请求发给另一台可以执行Ingest Pipeline的Node。

  1. Auto Create Index

判断当前Index是否存在,如果不存在,则需要自动创建Index,这里需要和Master交互。也可以通过配置关闭自动创建Index的功能。

  1. Set Routing

设置路由条件,如果Request中指定了路由条件,则直接使用Request中的Routing,否则使用Mapping中配置的,如果Mapping中无配置,则使用默认的_id字段值。

在这一步中,如果没有指定id字段,则会自动生成一个唯一的_id字段,目前使用的是UUID。

  1. Construct BulkShardRequest

由于Bulk Request中会包括多个(Index/Update/Delete)请求,这些请求根据routing可能会落在多个Shard上执行,这一步会按Shard挑拣Single Write Request,同一个Shard中的请求聚集在一起,构建BulkShardRequest,每个BulkShardRequest对应一个Shard。

  1. Send Request To Primary

这一步会将每一个BulkShardRequest请求发送给相应Shard的Primary Node。

Primary Node

Primary 请求的入口是在PrimaryOperationTransportHandler的messageReceived,我们来看一下相关的逻辑流程。

  1. Index or Update or Delete

循环执行每个Single Write Request,对于每个Request,根据操作类型(CREATE/INDEX/UPDATE/DELETE)选择不同的处理逻辑。

其中,Create/Index是直接新增Doc,Delete是直接根据_id删除Doc,Update会稍微复杂些,我们下面就以Update为例来介绍。

  1. Translate Update To Index or Delete

这一步是Update操作的特有步骤,在这里,会将Update请求转换为Index或者Delete请求。首先,会通过GetRequest查询到已经存在的同_id Doc(如果有)的完整字段和值(依赖_source字段),然后和请求中的Doc合并。同时,这里会获取到读到的Doc版本号,记做V1。

  1. Parse Doc

这里会解析Doc中各个字段。生成ParsedDocument对象,同时会生成uid Term。在Elasticsearch中,_uid = type # _id,对用户,_Id可见,而Elasticsearch中存储的是_uid。这一部分生成的ParsedDocument中也有Elasticsearch的系统字段,大部分会根据当前内容填充,部分未知的会在后面继续填充ParsedDocument。

  1. Update Mapping

Elasticsearch中有个自动更新Mapping的功能,就在这一步生效。会先挑选出Mapping中未包含的新Field,然后判断是否运行自动更新Mapping,如果允许,则更新Mapping。

  1. Get Sequence Id and Version

由于当前是Primary Shard,则会从SequenceNumber Service获取一个sequenceID和Version。SequenceID在Shard级别每次递增1,SequenceID在写入Doc成功后,会用来初始化LocalCheckpoint。Version则是根据当前Doc的最大Version递增1。

  1. Add Doc To Lucene

这一步开始的时候会给特定_uid加锁,然后判断该_uid对应的Version是否等于之前Translate Update To Index步骤里获取到的Version,如果不相等,则说明刚才读取Doc后,该Doc发生了变化,出现了版本冲突,这时候会抛出一个VersionConflict的异常,该异常会在Primary Node最开始处捕获,重新从“Translate Update To Index or Delete”开始执行。

如果Version相等,则继续执行,如果已经存在同id的Doc,则会调用Lucene的UpdateDocument(uid, doc)接口,先根据uid删除Doc,然后再Index新Doc。如果是首次写入,则直接调用Lucene的AddDocument接口完成Doc的Index,AddDocument也是通过UpdateDocument实现。

这一步中有个问题是,如何保证Delete-Then-Add的原子性,怎么避免中间状态时被Refresh?答案是在开始Delete之前,会加一个Refresh Lock,禁止被Refresh,只有等Add完后释放了Refresh Lock后才能被Refresh,这样就保证了Delete-Then-Add的原子性。

Lucene的UpdateDocument接口中就只是处理多个Field,会遍历每个Field逐个处理,处理顺序是invert index,store field,doc values,point dimension,后续会有文章专门介绍Lucene中的写入。

  1. Write Translog

写完Lucene的Segment后,会以keyvalue的形式写TransLog,Key是_id,Value是Doc内容。当查询的时候,如果请求是GetDocByID,则可以直接根据_id从TransLog中读取到,满足NoSQL场景下的实时性要去。

需要注意的是,这里只是写入到内存的TransLog,是否Sync到磁盘的逻辑还在后面。

这一步的最后,会标记当前SequenceID已经成功执行,接着会更新当前Shard的LocalCheckPoint。

  1. Renew Bulk Request

这里会重新构造Bulk Request,原因是前面已经将UpdateRequest翻译成了Index或Delete请求,则后续所有Replica中只需要执行Index或Delete请求就可以了,不需要再执行Update逻辑,一是保证Replica中逻辑更简单,性能更好,二是保证同一个请求在Primary和Replica中的执行结果一样。

  1. Flush Translog

这里会根据TransLog的策略,选择不同的执行方式,要么是立即Flush到磁盘,要么是等到以后再Flush。Flush的频率越高,可靠性越高,对写入性能影响越大。

  1. Send Requests To Replicas

这里会将刚才构造的新的Bulk Request并行发送给多个Replica,然后等待Replica的返回,这里需要等待所有Replica返回后(可能有成功,也有可能失败),Primary Node才会返回用户。如果某个Replica失败了,则Primary会给Master发送一个Remove Shard请求,要求Master将该Replica Shard从可用节点中移除。

这里,同时会将SequenceID,PrimaryTerm,GlobalCheckPoint等传递给Replica。

发送给Replica的请求中,Action Name等于原始ActionName + [R],这里的R表示Replica。通过这个[R]的不同,可以找到处理Replica请求的Handler。

  1. Receive Response From Replicas

Replica中请求都处理完后,会更新Primary Node的LocalCheckPoint。

Replica Node

Replica 请求的入口是在ReplicaOperationTransportHandler的messageReceived,我们来看一下相关的逻辑流程。

  1. Index or Delete

根据请求类型是Index还是Delete,选择不同的执行逻辑。这里没有Update,是因为在Primary Node中已经将Update转换成了Index或Delete请求了。

  1. Parse Doc

  2. Update Mapping

以上都和Primary Node中逻辑一致。

  1. Get Sequence Id and Version

Primary Node中会生成Sequence ID和Version,然后放入ReplicaRequest中,这里只需要从Request中获取到就行。

  1. Add Doc To Lucene

由于已经在Primary Node中将部分Update请求转换成了Index或Delete请求,这里只需要处理Index和Delete两种请求,不再需要处理Update请求了。比Primary Node会更简单一些。

  1. Write Translog

  2. Flush Translog

以上都和Primary Node中逻辑一致。

最后

上面详细介绍了Elasticsearch的写入流程及其各个流程的工作机制,我们在这里再次总结下之前提出的分布式系统中的六大特性:

  • 可靠性:由于Lucene的设计中不考虑可靠性,在Elasticsearch中通过Replica和TransLog两套机制保证数据的可靠性。
  • 一致性:Lucene中的Flush锁只保证Update接口里面Delete和Add中间不会Flush,但是Add完成后仍然有可能立即发生Flush,导致Segment可读。这样就没法保证Primary和所有其他Replica可以同一时间Flush,就会出现查询不稳定的情况,这里只能实现最终一致性。
  • 原子性:Add和Delete都是直接调用Lucene的接口,是原子的。当部分更新时,使用Version和锁保证更新是原子的。
  • 隔离性:仍然采用Version和局部锁来保证更新的是特定版本的数据。
  • 实时性:使用定期Refresh Segment到内存,并且Reopen Segment方式保证搜索可以在较短时间(比如1秒)内被搜索到。通过将未刷新到磁盘数据记入TransLog,保证对未提交数据可以通过ID实时访问到。
  • 性能:性能是一个系统性工程,所有环节都要考虑对性能的影响,在Elasticsearch中,在很多地方的设计都考虑到了性能,一是不需要所有Replica都返回后才能返回给用户,只需要返回特定数目的就行;二是生成的Segment现在内存中提供服务,等一段时间后才刷新到磁盘,Segment在内存这段时间的可靠性由TransLog保证;三是TransLog可以配置为周期性的Flush,但这个会给可靠性带来伤害;四是每个线程持有一个Segment,多线程时相互不影响,相互独立,性能更好;五是系统的写入流程对版本依赖较重,读取频率较高,因此采用了versionMap,减少热点数据的多次磁盘IO开销。Lucene中针对性能做了大量的优化。

参考文档

https://www.elastic.co/guide/cn/elasticsearch/guide/current/distrib-read.html

https://www.elastic.co/guide/cn/elasticsearch/guide/current/distrib-multi-doc.html

https://www.elastic.co/guide/cn/elasticsearch/guide/current/inside-a-shard.html

https://zhuanlan.zhihu.com/p/34674517

https://zhuanlan.zhihu.com/p/34669354

https://www.cnblogs.com/yangwenbo214/p/9831479.html

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

es详解-原理-es原理之索引文档流程详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

MySQL索引原理详解

目录索引是什么索引数据结构树形索引树的动画为什么不是简单的二叉树?为什么不是红黑树?为什么最终选择B+树 而不是B树水平方向可以存放更多的索引key数据量估算叶子节点包含所有的索引字段叶子节点直接包含双向指针,范围查找效率高Hash 索引更
2022-08-19

Mysql执行原理之索引合并详解

mysql执行原理之索引合并详解我们前边说过MySQL在一般情况下执行一个查询时最多只会用到单个二级索引,但存在有特殊情况,在这些特殊情况下也可能在一个查询中使用到多个二级索引,MySQL中这种使用到多个索引来完成一次查询的执行方法称之为
2022-12-20

DorisJoin优化原理文档详解

这篇文章主要为大家介绍了DorisJoin优化原理文档详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2022-11-13

MySQL的InnoDB索引原理详解

摘要:本篇介绍下Mysql的InnoDB索引相关知识,从各种树到索引原理到存储的细节。InnoDB是Mysql的默认存储引擎(Mysql5.5.5之前是MyISAM,文档)。本着高效学习的目的,本篇以介绍InnoDB为主,少量涉及MyISA
2022-05-18

Java学习之缓冲流的原理详解

为了提高其数据的读写效率,Java中又定义了四种缓冲流,分别是:字节缓冲输入流、字节缓冲输出流、字符缓冲输入流和字符缓冲输出流。本文主要来和大家聊聊这些缓冲流的原理,希望对大家有所帮助
2023-01-28

Kotlin协程launch启动流程原理详解

这篇文章主要为大家介绍了Kotlin协程launch启动流程原理详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2022-12-08

Java基础之Stream流原理与用法详解

从Java1.8开始提出了Stream流的概念,侧重对于源数据计算能力的封装,并且支持序列与并行两种操作方式。本文就来为大家详细讲讲Stream流原理与用法
2022-11-13

Nest.js之依赖注入原理及实现过程详解

这篇文章主要为大家介绍了Nest.js之依赖注入原理及实现过程详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-01-12

Linux文件系统之重定向的实现原理详解

本文详细讲解了Linux文件系统中的重定向实现原理。重定向通过识别重定向符,重定向文件描述符,系统调用和进程执行来实现。重定向输入将标准输入文件描述符复制到指定文件。重定向输出将标准输出文件描述符复制到指定文件。错误输出和管道也是重定向形式。
Linux文件系统之重定向的实现原理详解
2024-04-02

深入详解Mybatis的架构原理与六大核心流程

MyBatis 是 Java 生态中非常著名的一款 ORM 框架,目前在一线互联网大厂中应用广泛,Mybatis已经成为了一个必会框架。
MyBatisJavaORM2024-12-02

编程热搜

  • Mysql分表查询海量数据和解决方案
    众所周知数据库的管理往往离不开各种的数据优化,而要想进行优化通常我们都是通过参数来完成优化的。那么到底这些参数有哪些呢?为此在本篇文章中编程学习网笔者就为大家简单介绍MySQL,以供大家参考参考,希望能帮助到大家。以上就是关于大数据的知识点了。喜欢的可以分享给你的朋友,也可以点赞噢~更多内容,就在编程学习网!
    Mysql分表查询海量数据和解决方案
  • 大数据的妙用及17年趋势
    2017年,支持大量结构化和非结构化数据的系统将继续增长。市场需要数据平台来帮助数据管理人员管理和保护大数据,同时允许最终用户进行数据分析。这些系统将逐步成熟,在企业内部的IT系统中更好地运行。所以,我们更要了解大数据!互联网普及使得网民的行为更加多元化,通过互联网产生的数据发展更加迅猛,更具代表性。互联网世界中的商品信息、社交媒体中的图片、文本信息以及视频网站的视频信息,互联网世界中的人与人交互信息、位置信息等,都已经成为大数据的最重要也是增长最快的来源。大家都了解到了吗!更多内容就在编程学习网哟
    大数据的妙用及17年趋势
  • 5G大数据时代空降来袭
    欢迎各位阅读本篇文章,本文主要讲了5G大数据时代。如今 5G 概念已不再陌生,按照行业认同的说法:2017年至2018年 5G 将在国内开始有序测试,2019年进行预商用。工信部之前已表示,中国将在2020年启动 5G 商用。编程学习网教育平台提醒各位:本篇文章纯干货~因此大家一定要认真阅读本篇文章哦!
    5G大数据时代空降来袭
  • es详解-原理-从图解构筑对es原理的初步认知
    在学习ElasticSearch原理时,我推荐你先通过官方博客中的一篇图解文章(虽然是基于2.x版本)来构筑对ES的初步认知(这种认识是体系上的快速认知)。ES详解 - 原理:从图解构筑对ES原理的初步认知前言图解ElasticSearch图解LuceneSegmentInverted IndexStored Fiel
    es详解-原理-从图解构筑对es原理的初步认知
  • elasticsearch-wrapperquery
    在工作中遇到ElasticSearch版本升级时出现Java High Level接口变更导致的兼容性问题: 之前使用的是2.4.x,考虑性能和功能的增强,需要更换为6.4.x; 2.4.x中我们使用DSL语句直接查询(数据的不确定性和方便动态建立查询规则等因素),而新的ES Java 高阶API中去掉了相关接口的支持
    elasticsearch-wrapperquery
  • 学习大数据营销思维(下)
    编程学习网: 其实,通过上面的介绍,我们知道苹果通过各类产品与服务销售相互促进以理及薄利多销的方式来盈利第二种战略联盟类型是合作方的共同赢利。苹果公司打造了一个参与方共同受益的业务系统。
    学习大数据营销思维(下)
  • 纯干货:HLS 协议详解及优化技术全面解析
    编程学习网:HLS (HTTP Live Streaming), 是由 Apple 公司实现的基于 HTTP 的媒体流传输协议。他跟 DASH 协议的原理非常类似,通过将整条流切割成一个小的可以通过 HTTP 下载的媒体文件,然后提供一个配套的媒体列表文件给客户端,让客户端顺序地拉取这些媒体文件播放, 来实现看上去是在播放一条流的效果。HLS 目前广泛地应用于点播和直播领域。
    纯干货:HLS 协议详解及优化技术全面解析
  • 关于Python 代码全面分析
    欢迎各位阅读本篇,Python(KK 英语发音:/ˈpaɪθən/)是一种面向对象、直译式计算机程序设计语言。本篇文章讲述了关于Python 代码全面分析。
    关于Python 代码全面分析
  • es详解-原理-es原理之索引文档流程详解
    ElasticSearch中最重要原理是文档的索引和文档的读取,本文带你理解ES文档的索引过程。ES详解 - 原理:ES原理之索引文档流程详解文档索引步骤顺序单个文档多个文档文档索引过程详解整体的索引流程分步骤看数据持久化过程深入ElasticSearch索引文档的实现机制写操作的关键点Lucene的写Elastics
    es详解-原理-es原理之索引文档流程详解
  • 五大“网管”必备的网络数据分析工具
    是不是在为如何分析统计网络数据和流量烦恼呢?想不想监控、运维、排障轻松一些?下面给大家提供一些免费网络分析工具,以帮助大家更好的掌控自己的网络!编程学习网教育
    五大“网管”必备的网络数据分析工具

目录