我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python机器学习之神经网络的示例分析

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python机器学习之神经网络的示例分析

这篇文章主要介绍了python机器学习之神经网络的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。

python可以做什么

Python是一种编程语言,内置了许多有效的工具,Python几乎无所不能,该语言通俗易懂、容易入门、功能强大,在许多领域中都有广泛的应用,例如最热门的大数据分析,人工智能,Web开发等。

手写数字识别算法

import pandas as pdimport numpy as npfrom sklearn.neural_network import MLPRegressor  #从sklearn的神经网络中引入多层感知器data_tr = pd.read_csv('BPdata_tr.txt')  # 训练集样本data_te = pd.read_csv('BPdata_te.txt')  # 测试集样本X=np.array([[0.568928884039633],[0.379569493792951]]).reshape(1, -1)#预测单个样本#参数:hidden_layer_sizes中间层的个数  activation激活函数默认relu  f(x)= max(0,x)负值全部舍去,信号相应正向传播效果好#random_state随机种子,max_iter最大迭代次数,即结束,learning_rate_init学习率,学习速度,步长model = MLPRegressor(hidden_layer_sizes=(10,), activation='relu',random_state=10, max_iter=8000, learning_rate_init=0.3)  # 构建模型,调用sklearn实现神经网络算法model.fit(data_tr.iloc[:, :2], data_tr.iloc[:, 2])    # 模型训练(将输入数据x,结果y放入多层感知器拟合建立模型) .iloc是按位置取数据pre = model.predict(data_te.iloc[:, :2])              # 模型预测(测试集数据预测,将实际结果与预测结果对比)pre1 = model.predict(X)#预测单个样本,实际值0.467753075712819err = np.abs(pre - data_te.iloc[:, 2]).mean()# 模型预测误差(|预测值-实际值|再求平均)print("模型预测值:",pre,end='\n______________________________\n')print('模型预测误差:',err,end='\n++++++++++++++++++++++++++++++++\n')print("单个样本预测值:",pre1,end='\n++++++++++++++++++++++++++++++++\n')#查看相关参数。print('权重矩阵:','\n',model.coefs_) #list,length n_layers - 1,列表中的第i个元素表示对应于层i的权重矩阵。print('偏置矩阵:','\n',model.intercepts_) #list,length n_layers - 1,列表中的第i个元素表示对应于层i + 1的偏置矢量。

python机器学习之神经网络的示例分析

数字手写识别系统

#数字手写识别系统,DBRHD和MNIST是数字手写识别的数据集import numpy as np  # 导入numpy工具包from os import listdir  # 使用listdir模块,用于访问本地文件from sklearn.neural_network import MLPClassifier #从sklearn的神经网络中引入多层感知器#自定义函数,将图片转换成向量def img2vector(fileName):    retMat = np.zeros([1024], int)  # 定义返回的矩阵,大小为1*1024    fr = open(fileName)  # 打开包含32*32大小的数字文件    lines = fr.readlines()  # 读取文件的所有行    for i in range(32):  # 遍历文件所有行        for j in range(32):  # 并将01数字存放在retMat中            retMat[i * 32 + j] = lines[i][j]    return retMat#自定义函数,获取数据集def readDataSet(path):    fileList = listdir(path)  # 获取文件夹下的所有文件    numFiles = len(fileList)  # 统计需要读取的文件的数目    dataSet = np.zeros([numFiles, 1024], int)  # 用于存放所有的数字文件juzheng    hwLabels = np.zeros([numFiles, 10])  # 用于存放对应的one-hot标签(每个文件都对应一个10列的矩阵)    for i in range(numFiles):  # 遍历所有的文件        filePath = fileList[i]  # 获取文件名称/路径        digit = int(filePath.split('_')[0])  # 通过文件名获取标签,split返回分割后的字符串列表        hwLabels[i][digit] = 1.0  # 将对应的one-hot标签置1 .one-hot编码,又称独热编码、一位有效编码.one-hot向量将类别变量转换为机器学习算法易于利用的一种形式的过程,这个向量的表示为一项属性的特征向量,也就是同一时间只有一个激活点(不为0),这个向量只有一个特征是不为0的,其他都是0,特别稀疏。        dataSet[i] = img2vector(path + '/' + filePath)  # 读取文件内容    return dataSet, hwLabels#读取训练数据,并训练模型train_dataSet, train_hwLabels = readDataSet('trainingDigits')#参数:hidden_layer_sizes中间层的个数,activation激活函数 logistic:f(x)=1/(1+exp(-x))将值映射在一个0~1的范围内。#solver权重优化的求解器adam默认,用于较大的数据集,lbfgs用于小型的数据集收敛的更快效果更好。max_iter迭代次数越多越准确clf = MLPClassifier(hidden_layer_sizes=(50,),activation='logistic', solver='adam',learning_rate_init=0.001, max_iter=700)clf.fit(train_dataSet, train_hwLabels)#数据集,标签,拟合# 读取测试数据对测试集进行预测dataSet, hwLabels = readDataSet('testDigits')res = clf.predict(dataSet) #预测结果是标签([numFiles, 10]的矩阵) print("测试数据",dataSet,'\n___________________________________\n')print("测试标签",hwLabels,'\n++++++++++++++++++++++++++++++++++++++++\n')print("测试结果",res)error_num = 0  # 统计预测错误的数目num = len(dataSet)  # 测试集的数目for i in range(num):  # 遍历预测结果    # 比较长度为10的数组,返回包含01的数组,0为不同,1为相同    # 若预测结果与真实结果相同,则10个数字全为1,否则不全为1    if np.sum(res[i] == hwLabels[i]) < 10:        error_num += 1print("Total num:", num, " Wrong num:",error_num, "  WrongRate:", error_num / float(num))

python机器学习之神经网络的示例分析

可视化MNIST是数字手写识别的数据集

from keras.datasets import mnist#导入数字手写识别系统的数据集import matplotlib.pyplot as plt(X_train, y_train), (X_test, y_test) = mnist.load_data()#以2*2(2行2列)图的方式展现plt.subplot(221)plt.imshow(X_train[1], cmap=plt.get_cmap('gray_r'))#白底黑字plt.subplot(222)plt.imshow(X_train[2], cmap=plt.get_cmap('gray'))#黑底白字plt.subplot(223)plt.imshow(X_train[3], cmap=plt.get_cmap('gray'))plt.subplot(224)plt.imshow(X_train[4], cmap=plt.get_cmap('gray'))# show the plotplt.show()

python机器学习之神经网络的示例分析

感谢你能够认真阅读完这篇文章,希望小编分享的“python机器学习之神经网络的示例分析”这篇文章对大家有帮助,同时也希望大家多多支持编程网,关注编程网行业资讯频道,更多相关知识等着你来学习!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python机器学习之神经网络的示例分析

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python机器学习之神经网络的示例分析

这篇文章主要介绍了python机器学习之神经网络的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。python可以做什么Python是一种编程语言,内置了许多有效的工具
2023-06-14

机器学习、深度学习和神经网络之间的区别和联系

机器学习、深度学习和神经网络是人工智能领域相互关联的技术。机器学习赋予计算机从数据中学习的能力,深度学习则使用神经网络提取更高级别的特征,神经网络受人脑运作启发,处理输入数据并输出预测。这些技术之间的区别在于复杂性、层数和数据需求。联系在于机器学习是深度学习的基础,神经网络是深度学习架构的基石,三者共同用于从数据中提取知识并做出预测,广泛应用于图像识别、自然语言处理等领域。
机器学习、深度学习和神经网络之间的区别和联系
2024-04-02

Pytorch深度学习经典卷积神经网络resnet模块实例分析

这篇文章主要介绍“Pytorch深度学习经典卷积神经网络resnet模块实例分析”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Pytorch深度学习经典卷积神经网络resnet模块实例分析”文章能帮
2023-06-30

Python机器学习之AdaBoost算法的示例分析

这篇文章将为大家详细讲解有关Python机器学习之AdaBoost算法的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。一、算法概述AdaBoost 是英文 Adaptive Boosting(自适
2023-06-15

Python卷积神经网络图片分类框架的示例分析

小编给大家分享一下Python卷积神经网络图片分类框架的示例分析,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!整体结构config在config文件夹下的config.py中主要定义数据集的位置,训练轮数,batch_si
2023-06-25

Python机器学习之逻辑回归的示例分析

这篇文章主要介绍了Python机器学习之逻辑回归的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。Python主要用来做什么Python主要应用于:1、Web开发;2、
2023-06-15

Python机器学习中pandas的示例分析

小编给大家分享一下Python机器学习中pandas的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!python的五大特点是什么python的五大特点:1
2023-06-15

Python机器学习之PCA降维算法的示例分析

小编给大家分享一下Python机器学习之PCA降维算法的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!一、算法概述主成分分析 (Principal Com
2023-06-15

python机器学习GCN图卷积神经网络的原理是什么

这篇文章主要介绍“python机器学习GCN图卷积神经网络的原理是什么”,在日常操作中,相信很多人在python机器学习GCN图卷积神经网络的原理是什么问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”pytho
2023-06-30

Python全栈之学习JQuery的示例分析

这篇“Python全栈之学习JQuery的示例分析”文章,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要参考一下,对于“Python全栈之学习JQuery的示例分析”,小编整理了以下知识点,请大家跟着小编的步伐一步一
2023-06-29

Python全栈之学习HTML的示例分析

这篇“Python全栈之学习HTML的示例分析”除了程序员外大部分人都不太理解,今天小编为了让大家更加理解“Python全栈之学习HTML的示例分析”,给大家总结了以下内容,具有一定借鉴价值,内容详细步骤清晰,细节处理妥当,希望大家通过这篇
2023-06-29

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录