我的编程空间,编程开发者的网络收藏夹
学习永远不晚

C语言数据结构之堆排序详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

C语言数据结构之堆排序详解

1.堆的概念及结构

如果有一个关键码的集合K = {k0,k1, k2,…,kn-1},把它的所有元素按完全二叉树(二叉树具体概念参见——二叉树详解)的顺序存储方式存储在一个一维数组中,并满足:Ki <= K2i+1 且 Ki<= K2i+2 (Ki >= K2i+1 且 Ki >= K2i+2) i = 0,1,2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

堆的性质:

  • 堆中某个节点的值总是不大于或不小于其父节点的值;
  • 堆总是一棵完全二叉树。

2.堆的实现

堆的实现请参见——二叉树详解(堆的实现)

2.1 堆的向下调整算法

(此文章都已建小堆为例)

向下调整算法前提:当前树左右子树都是小堆

核心思想:选出左右孩子中小的那个,和父亲交换,小的往上浮,大的往下沉,这里是小堆,如果是大堆则相反。

代码实现

void swap(int *x, int *y)
{
    int temp = *x;
    *x = *y;
    *y = temp;
}
//堆向下调整算法
void AdjustDown(int *a, int n, int root)
{
    int parent = root;
    int child = parent * 2 + 1;
    while (child<n)
    {
        //保证孩子节点child为两个孩子中的最小值;保证不越界
        if (a[child] > a[child + 1] && child+1 < n)
            ++child;
        if (a[child] < a[parent])
        {
            swap(&a[child], &a[parent]);
            parent = child;
            child = parent * 2 + 1;
        }
        else
            break;
    }
}

2.2 堆的向上调整算法

使用场景:向上调整算法适用于向堆中插入数据,当向堆中插入数据就可能会导致堆失去大堆或者小堆的性质,此时需要重新调整,向上调整的思路与向下调整算法的思路类似,向上调整算法只需要从插入结点位置开始和父节点比较。

图示:

代码实现:

void AdjustUp(int *a, int child)
{
    int parent = (child - 1) / 2;
    while (child > 0)
    {
        if (a[parent] > a[child])
        {
            swap(&a[parent], &a[child]);
            child = parent;
            parent = (child - 1) / 2;
        }
        else
            break;
    }
}

2.3 建堆(数组)

从最后一个非叶子节点位置行依次开始调整,如图:

代码实现:

int parent = (n-2) / 2;
    //首先对每一个非叶子节点进行一次向下调整算法,保证每个非叶子节点的
    //孩子都小于它的父节点,然后可得到最小值,就在堆的顶端的父节点(也叫做建小堆)
    while (parent >= 0)
    {
        AdjustDown(a, n, parent);
        --parent;
    }

2.4 堆排序

升序建大堆,降序建小堆

void HeapSort(int *a, int n)
{
    int parent = (n-2) / 2;
    //首先对每一个非叶子节点进行一次向下调整算法,保证每个非叶子节点的
    //孩子都小于它的父节点,然后可得到最小值,就在堆的顶端的父节点(也叫做建小堆)
    while (parent >= 0)
    {
        AdjustDown(a, n, parent);
        --parent;
    }
    int end = n-1;
    while (end>0)
    {
        //将堆顶的数与最后的end,以此循环,进行交换就可得到有序序列
        //注意:建小堆,得到降序序列
        swap(&a[end], &a[0]);
        AdjustDown(a, end, 0);
        --end;
    }
}

2.5 堆排序的时间复杂度

所以建堆时间复杂度为O(N);

向下调整算法时间复杂度 O(logN);

所以堆排序的时间复杂度为 O(N*logN)

以上就是C语言数据结构之堆排序详解的详细内容,更多关于C语言堆排序的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

C语言数据结构之堆排序详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录