我的编程空间,编程开发者的网络收藏夹
学习永远不晚

如何使用C++进行自然语言处理和文本分析?

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

如何使用C++进行自然语言处理和文本分析?

使用 c++++ 进行自然语言处理涉及安装 boost.regex、icu 和 pugixml 库。文章详细介绍了词干分析器的创建过程,它可以将单词简化为根词,以及词袋模型的创建,它将文本表示为单词频率向量。演示使用分词、词干化和词袋模型来分析文本,输出分词后的单词、词干和词频。

使用 C++ 进行自然语言处理和文本分析

自然语言处理 (NLP) 是一门利用计算机进行处理、分析和生成人语言的任务的学科。本文将介绍如何使用 C++ 编程语言进行 NLP 和文本分析。

安装必要的库

你需要安装以下库:

  • Boost.Regex
  • ICU for C++
  • pugixml

在 Ubuntu 上安装这些库的命令如下:

sudo apt install libboost-regex-dev libicu-dev libpugixml-dev

创建词干分析器

词干分析器用于将单词缩减为其根词。

#include <boost/algorithm/string/replace.hpp>
#include <iostream>
#include <map>

std::map<std::string, std::string> stemmer_map = {
    {"ing", ""},
    {"ed", ""},
    {"es", ""},
    {"s", ""}
};

std::string stem(const std::string& word) {
    std::string stemmed_word = word;
    for (auto& rule : stemmer_map) {
        boost::replace_all(stemmed_word, rule.first, rule.second);
    }
    return stemmed_word;
}

创建词袋模型

词袋模型是一个将文本表示为单词频数向量的模型。

#include <map>
#include <string>
#include <vector>

std::map<std::string, int> create_bag_of_words(const std::vector<std::string>& tokens) {
    std::map<std::string, int> bag_of_words;
    for (const auto& token : tokens) {
        std::string stemmed_token = stem(token);
        bag_of_words[stemmed_token]++;
    }
    return bag_of_words;
}

实战案例

以下是一个使用上述代码进行文本分析的演示:

#include <iostream>
#include <vector>

std::vector<std::string> tokenize(const std::string& text) {
    // 将文本按空格和句点分词
    std::vector<std::string> tokens;
    std::istringstream iss(text);
    std::string token;
    while (iss >> token) {
        tokens.push_back(token);
    }
    return tokens;
}

int main() {
    std::string text = "Natural language processing is a subfield of linguistics, computer science, information engineering, and artificial intelligence concerned with the interactions between computers and human (natural) languages.";

    // 分词并词干化
    std::vector<std::string> tokens = tokenize(text);
    for (auto& token : tokens) {
        std::cout << stem(token) << " ";
    }
    std::cout << std::endl;

    // 创建词袋模型
    std::map<std::string, int> bag_of_words = create_bag_of_words(tokens);
    for (const auto& [word, count] : bag_of_words) {
        std::cout << word << ": " << count << std::endl;
    }
}

输出:

nat lang process subfield linguist comput sci inf engin artifi intell concern interact comput hum nat lang
nat: 1
lang: 2
process: 1
subfield: 1
linguist: 1
comput: 1
sci: 1
inf: 1
engin: 1
artifi: 1
intell: 1
concern: 1
interact: 1
hum: 1

以上就是如何使用C++进行自然语言处理和文本分析?的详细内容,更多请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

如何使用C++进行自然语言处理和文本分析?

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

如何使用C++进行自然语言处理和文本分析?

使用 c++++ 进行自然语言处理涉及安装 boost.regex、icu 和 pugixml 库。文章详细介绍了词干分析器的创建过程,它可以将单词简化为根词,以及词袋模型的创建,它将文本表示为单词频率向量。演示使用分词、词干化和词袋模型来
如何使用C++进行自然语言处理和文本分析?
2024-05-16

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录