我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python机器学习Github已达8.9Kstars模型解释器LIME

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python机器学习Github已达8.9Kstars模型解释器LIME

简单的模型例如线性回归,LR等模型非常易于解释,但在实际应用中的效果却远远低于复杂的梯度提升树模型以及神经网络等模型。

现在大部分互联网公司的建模都是基于梯度提升树或者神经网络模型等复杂模型,遗憾的是,这些模型虽然效果好,但是我们却较难对其进行很好地解释,这也是目前一直困扰着大家的一个重要问题,现在大家也越来越加关注模型的解释性。

本文介绍一种解释机器学习模型输出的方法LIME。它可以认为是SHARP的升级版,Github链接:https://github.com/marcotcr/lime,有所收获多多支持

LIME

LIME(Local Interpretable Model-agnostic Explanations)支持的模型包括:

  • 结构化模型的解释;
  • 文本分类器的解释;
  • 图像分类器的解释;

LIME被用作解释机器学习模型的解释,通过LIME我们可以知道为什么模型会这样进行预测。

本文我们就重点观测一下LIME是如何对预测结果进行解释的。

代 码

此处我们使用winequality-white数据集,并且将quality<=5设置为0,其它的值转变为1.


# !pip install lime
import pandas as pd
from xgboost import XGBClassifier
import shap
import numpy as np
from sklearn.model_selection import train_test_split

df = pd.read_csv('./data/winequality-white.csv',sep = ';')
df['quality'] = df['quality'].apply(lambda x: 0 if x <= 5 else 1)
df.head()

在这里插入图片描述


# 训练集测试集分割
X = df.drop('quality', axis=1)
y = df['quality'] 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)
# 模型训练
model = XGBClassifier(n_estimators = 100, random_state=42)
model.fit(X_train, y_train)
score = model.score(X_test, y_test)
score

The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. 0.832653061224489

对单个样本进行预测解释

下面的图中表明了单个样本的预测值中各个特征的贡献。


import lime
from lime import lime_tabular
explainer = lime_tabular.LimeTabularExplainer(
    training_data=np.array(X_train),
    feature_names=X_train.columns,
    class_names=['bad', 'good'],
    mode='classification'
)

模型有84%的置信度是坏的wine,而其中alcohol,totals ulfur dioxide是最重要的。

在这里插入图片描述


import lime
from lime import lime_tabular
explainer = lime_tabular.LimeTabularExplainer(
    training_data=np.array(X_train),
    feature_names=X_train.columns,
    class_names=['bad', 'good'],
    mode='classification'
)

模型有59%的置信度是坏的wine,而其中alcohol,chlorides, density, citric acid是最重要的预测参考因素。

在这里插入图片描述


exp = explainer.explain_instance(data_row=X_test.iloc[1], predict_fn=model.predict_proba)
exp.show_in_notebook(show_table=True)

适用问题

LIME可以认为是SHARP的升级版,它通过预测结果解释机器学习模型很简单。它为我们提供了一个很好的方式来向非技术人员解释地下发生了什么。您不必担心数据可视化,因为LIME库会为您处理数据可视化。

参考链接

https://www.kaggle.com/piyushagni5/white-wine-quality
LIME: How to Interpret Machine Learning Models With Python
https://github.com/marcotcr/lime
https://mp.weixin.qq.com/s/47omhEeHqJdQTtciLIN2Hw

以上就是Github已达8.9Kstars的最佳模型解释器LIME的详细内容,更多关于模型解释器LIME的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python机器学习Github已达8.9Kstars模型解释器LIME

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python解释模型库Shap怎么实现机器学习模型输出可视化

本篇内容主要讲解“python解释模型库Shap怎么实现机器学习模型输出可视化”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“python解释模型库Shap怎么实现机器学习模型输出可视化”吧!安装
2023-06-25

机器学习模型解释工具SHAP怎么使用

SHAP(SHapley Additive exPlanations)是一种机器学习模型解释工具,它可以解释模型的预测结果,帮助理解模型是如何做出预测的。以下是使用SHAP的一般步骤:安装SHAP库:可以通过pip安装shap库,如:pip
2023-10-21

Python使用机器学习模型实现温度预测详解

使用 Python 可以使用机器学习模型进行温度预测。常用的模型有回归分析、随机森林等。本文就来和大家来了具体实现方法,希望对大家有所帮助
2023-01-31

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录