我的编程空间,编程开发者的网络收藏夹
学习永远不晚

victoriaMetrics代理性能优化问题解析

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

victoriaMetrics代理性能优化问题解析

起因

最近有做一个Prometheus metrics代理的一个小项目,暂称为prom-proxy,目的是为了解析特定的指标(如容器、traefik、istio等指标),然后在原始指标中加入应用ID(当然还有其他指标操作,暂且不表)。经过简单的本地验证,就发布到联调环境,跑了几个礼拜一切正常,以为相安无事。但自以为没事不代表真的没事。

昨天突然老环境和新上prom-proxy的环境都出现了数据丢失的情况,如下图:

prom-proxy有一个自服务指标request_total,经观察发现,该指标增长极慢,因而一开始怀疑是发送端的问题(这是一个误区,后面会讲为何要增加缓存功能)。

进一步排查,发现上游发送端(使用的是victoriaMetrics的vmagent组件)出现了如下错误,说明是prom-proxy消费的数据跟不上vmagent产生的数据:

2022-03-24T09:55:49.945Z        warn    VictoriaMetrics/app/vmagent/remotewrite/client.go:277   couldn't send a block with size 370113 bytes to "1:secret-url": Post "xxxx": context deadline exceeded (Client.Timeout exceeded while awaiting headers); re-sending the block in 16.000 seconds

出现这种问题,首先想到的是增加并发处理功能。当前的并发处理数为8(即后台的goroutine数目),考虑到线上宿主机的core有30+,因此直接将并发处理数拉到30。经验证发现毫无改善。

另外想到的一种方式是缓存,如使用kafka或使用golang自带的缓存chan。但使用缓存也有问题,如果下游消费能力一直跟不上,缓存中将会产生大量积压的数据,且Prometheus监控指标具有时效性,积压过久的数据,可用性并不高又浪费存储空间。

下面是使用了缓存chan的例子,s.reqChan的初始大小设置为5000,并使用cacheTotal指标观察缓存的变更。这种方式下,数据接收和处理变为了异步(但并不完全异步)。

上面一开始有讲到使用request_total查看上游的请求是个误区,是因为请求统计和请求处理是同步的,因此如果请求没有处理完,就无法接收下一个请求,request_total也就无法增加。

func (s *Server) injectLabels(w http.ResponseWriter, r *http.Request) {
    data, _ := DecodeWriteRequest(r.Body)
    s.reqChan <- data
    cacheTotal.Inc()
    w.WriteHeader(http.StatusNoContent)
}
func (s *Server) Start() {
    go func() {
        for data := range s.reqChan {
            cacheTotal.Dec()
            processor := s.pool.GetWorkRequest()
            go func() {
                processor.JobChan <- data
                res := <-processor.RetChan
                if 0 != len(res.errStr) {
                    log.Errorf("err msg:%s,err.code:%d", res.errStr, res.statusCode)
                    return
                }
            }()
        }
    }()
}

上线后观察发现cacheTotal的统计增加很快,说明之前就是因为处理能力不足导致request_total统计慢。

至此似乎陷入了一个死胡同。多goroutine和缓存都是不可取的。

回顾一下,prom-proxy中处理了cadvisor、kube-state-metrics、istio和traefik的指标,同时在处理的时候做了自监控,统计了各个类型的指标。例如:

prom-proxy_metrics_total{kind="container"} 1.0396728e+07
prom-proxy_metrics_total{kind="istio"} 620414
prom-proxy_metrics_total{kind="total"} 2.6840415e+07

cacheTotal迅猛增加的同时,发现request_total增长极慢(表示已处理的请求),且istio类型的指标处理速率很慢,,而container类型的指标处理速度则非常快。这是一个疑点。

vmagent的一个请求中可能包含上千个指标,可能会混合各类指标,如容器指标、网关指标、中间件指标等等。

通过排查istio指标处理的相关代码,发现有三处可以优化:

  • 更精确地匹配需要处理的指标:之前是通过前缀通配符匹配的,经过精确匹配之后,相比之前处理的指标数下降了一半。
  • 代码中有重复写入指标的bug:这一处IO操作耗时极大
  • 将写入指标操作放到独立的goroutine pool中,独立于标签处理

经过上述优化,上线后发现缓存为0,性能达标!

一开始在开发完prom-proxy之后也做了简单的benchmark测试,但考虑到是在办公网验证的,网速本来就慢,因此注释掉了写入指标的代码,初步验证性能还算可以就结束了,没想到埋了一个深坑。

所以所有功能都需要覆盖验证,未验证的功能点都有可能是坑!

总结

  • 服务中必须增加必要的自监控指标:对于高频率请求的服务,增加请求缓存机制,即便不能削峰填谷,也可以作为一个监控指标(通过Prometheus metric暴露的),用于观察是否有请求积压;此外由于很多线上环境并不能直接到宿主机进行操作,像获取火焰图之类的方式往往不可行,此时指标就可以作为一个参考模型。
  • 进行多维度度、全面的benchmark:代码性能分为计算型和IO型。前者是算法问题,后者则涉及的问题比较多,如网络问题、并发不足的问题、使用了阻塞IO等。在进行benchmark的时候可以将其分开验证,即注释掉可能耗时的IO操作,首先验证计算型的性能,在计算型性能达标时启用IO操作,进一步做全面的benchmark验证。

后续

喜闻乐见的后续来了。。。

由于公司有两个大的线上集群,暂称为more集群和less集群,很不幸,性能达标的就是less集群的,其指标数据相比more集群来说非常less,大概是前者的十分之一。上到more集群之后服务内存直接达到50G,多个副本一起吃内存,直接将节点搞挂了。

迫不得已(又是那句话,感觉对了的点往往不对),重新做了pprof压力测试,发现内存黑洞就是下面这个函数(来自Prometheus),即便在办公电脑下进行压测,其内存使用仍然达到好几百M。该函数主要是读取vmagent传来的请求,首先进行snappy.Decode解码,然后unmarshal到临时变量wr中。低流量下完全没有问题,但高流量下完全无法应对:

func DecodeWriteRequest(r io.Reader) (*ReqData, error) {
	compressed, err := ioutil.ReadAll(r)
	if err != nil {
		return nil, err
	}
	reqBuf, err := snappy.Decode(nil, compressed)
	if err != nil {
		return nil, err
	}
	var wr prompb.WriteRequest
	if err := proto.Unmarshal(reqBuf, &wr); err != nil {
		return nil, err
	}
	return &ReqData{
		reqBuf: reqBuf,
		wr:     &wr,
	}, nil
}

解决办法就是拿出sync.pool大杀器,下面方式参考了victoriaMetrics的byteutil库(代码路径lib/byteutil),有兴趣的可以去看下,经过压测,相同测试情况下内存降到了不足100M。

func DecodeWriteRequest(r io.Reader, callback func(*prompb.WriteRequest)) error {
	ctx := getPushCtx(r)
	defer putPushCtx(ctx)
	if err := ctx.Read(); err != nil {
		return err
	}
	bb := bodyBufferPool.Get()
	defer bodyBufferPool.Put(bb)
	var err error
	bb.B, err = snappy.Decode(bb.B[:cap(bb.B)], ctx.reqBuf.B)
	if err != nil {
		return err
	}
	wr := getWriteRequest()
	defer putWriteRequest(wr)
	if err := wr.Unmarshal(bb.B); err != nil {
		return err
	}
	callback(wr)
	return nil
}

这样一来性能完全达标,10core下单pod每秒可以处理250w个指标!

重新发布线上,自然又出问题了,这次prom-proxy服务一切正常,但导致后端vmstorage(victoriametrics的存储服务)内存爆满。经过初步定位,是由于出现了slow insert,即出现大量 active time series导致缓存miss,进而导致内存暴增(prom-proxy服务会在原始指标中增加标签,并创建其他新的指标,这两类指标数目非常庞大,都属于active time series)。

最终的解决方式是将修改的指标作分类,并支持配置化启用,即如果修改的指标类型有:A、B、C、D四类。首先上线A,然后上线B,以此类推,让vmstorage逐步处理active time series,以此减少对后端存储的瞬时压力。

vmstorage有一个参数:--storage.maxDailySeries,它可以限制active time series的数目。但环境中正常情况下就有大量active time serials,如果设置了这个参数,新增的active time serials极有可能会挤掉老的active time serials,造成老数据丢失。

以上就是victoriaMetrics代理性能优化问题解析的详细内容,更多关于victoriaMetrics代理性能优化的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

victoriaMetrics代理性能优化问题解析

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

victoriaMetrics代理性能优化问题怎么解决

这篇文章主要介绍了victoriaMetrics代理性能优化问题怎么解决的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇victoriaMetrics代理性能优化问题怎么解决文章都会有所收获,下面我们一起来看看吧
2023-06-29

Flare应用前后端性能优化问题分析

本篇内容主要讲解“Flare应用前后端性能优化问题分析”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Flare应用前后端性能优化问题分析”吧!写在前面在聊 flare 之前,我想先聊聊 flam
2023-06-29

Mysql索引性能优化问题解决方案

mysql 创建的优化就是加索引,可是有时候会遇到加索引都没法达到想要的效果的情况,加上了所以,却还是搜索的全数据,原因是sqlEXPLAIN SELECTcs.sid,-- c.courseFrontTitle,-- c.imgBig,
2022-05-11

PHP性能优化常见问题解答:轻松解决性能瓶颈!

PHP性能优化常见问题解答,轻松解决性能瓶颈!
PHP性能优化常见问题解答:轻松解决性能瓶颈!
2024-02-05

PHP 性能优化:常见问题与解决之道

针对 php 性能优化常见问题,本文提供以下四大解决方案:优化数据库查询,通过创建索引、缓存常用查询结果和使用分页机制;使用缓存存储经常被访问的数据,并配置适当的缓存设置;优化数据结构、及时释放变量和启用内存泄漏检测功能,以减少内存消耗;调
PHP 性能优化:常见问题与解决之道
2024-05-10

PHP 性能优化:性能指标解读与分析

php 性能优化需要关注关键性能指标(kpi),包括请求/秒 (rps)、响应时间、内存使用率、cpu 利用率和错误率。分析这些 kpi 可识别性能瓶颈。实战案例中,rps 低、响应时间长表明 cpu 利用率过高,导致服务器处理请求困难。解
PHP 性能优化:性能指标解读与分析
2024-05-10

C++中代码优化问题的分析与解决方案

C++中代码优化问题的分析与解决方案在C++编程中,代码优化是一个重要的方面。优化代码可以使程序执行效率更高,运行速度更快,并减少资源的占用。本文将探讨一些常见的代码优化问题,并提供相应的解决方案和具体的代码示例。避免频繁的内存分配与释放在
2023-10-22

C++中代码优化问题的分析与解决方法

C++中代码优化问题的分析与解决方法摘要:在进行C++程序开发时,我们常常需要关注代码的性能优化。本文将介绍一些常见的代码优化问题,并提供相应的解决方法和具体代码示例,旨在帮助读者提高C++程序的执行效率。内存管理问题内存管理是代码优化中一
2023-10-22

Sphinx搜索性能优化与调试技巧分享(如何优化Sphinx搜索性能并处理常见问题?)

本文章分享了优化Sphinx搜索性能的技巧,包括选择正确字段类型、使用分词、创建索引、优化查询、使用缓存和调整配置。此外,还提供了处理常见Sphinx搜索问题的方法,如找不到查询结果、查询结果不准确、搜索速度慢、索引更新后查询失败和内存使用过高。最后,介绍了其他性能优化技巧,如使用SphinxQL、Sphinx过滤器、Sphinx插件和监控Sphinx性能。
Sphinx搜索性能优化与调试技巧分享(如何优化Sphinx搜索性能并处理常见问题?)
2024-04-02

vue性能优化之cdn引入vue-Router的问题

这篇文章主要介绍了vue性能优化之cdn引入vue-Router的问题及解决,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2022-11-13

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录