我的编程空间,编程开发者的网络收藏夹
学习永远不晚

c++部署yolov5模型

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

c++部署yolov5模型

C++部署yolov5模型

前言

不可否认,yolov5在目标检测方面大杀四方,在 SOTA 榜上留下过万众瞩目的成绩,但是官网代码给的只有 python 版本的 infer 代码,要求不高的话,勉勉强强可以实现部署,现在,我想在 win 下实现 c++ 部署过程,主要原因有:

  1. c++编译的文件,直接 cp 所有的 dll 以及 exe 到目标机器上就行,而 python 需要安装各种环境;
  2. c++的效率高于 python
  3. win 下我感觉 c++ 的部署与移植的便利性远远高于 python

谈到深度学习模型的部署问题,就引出来了几个常见的部署工具,例如 OpenVINO, tensorrt, onnxruntime等,以及基于这些框架又封装一层的,如 FastDeploy, mmdeploy等,这些工具各有特点,但对于目前的我来讲,就是想以最快的速度完成 ultracity/yolov5 生成的 pt 模型的部署,所以,选择了比较简单的 FastDeploy添加链接描述
现在这个 toolbox 能实现很多的功能,支持的模型也很多,有需要的话,可以自己上官网看看,这里就不做过多介绍了。

一、准备模型

FastDeploy 在调用 yolov5 的模型时,不是直接调用的 *.pt 文件,而是调用的 *.onnx(一种通用的深度学习模型)文件,因此,首先是需要对 *.pt 的文件进行格式转换,但并不是所有yolov5 的代码都支持 export *.pt to *.onnx 的功能,在这里,需要关注下 yolov5tag ,大于等于 v6.0 的才有 export.py 这个文件,所以,如果是老用户,就不不需读此文章了。

python export --weights *.pt --include onnx

二、Fastdeploy准备

这个还是需要自己编译下的,我是用 cmake 编译的,具体步骤:

  1. 设置下 ENABLE 目录下的选项:在这里插入图片描述我是用视觉模块,所以,我把 ENABLE_VISION 设置为 ON, 并且,因为我需要调用 onnx,也把 ORT_BACKENDPADDLE_BACKEND 设置为 ON,个人建议,用啥选啥,不用的先不要选,曾经遇到过坑,在编译的时候 ENABLE_OPENVINO_BACKEND=ON,然后再程序运行的时候就卡住不动了,结果发现是因为缺少了一个*.xml的文件,如果没人指点的话,估计这一个月都不知道问题出在哪里。2. 设置 with,在这里插入图片描述
    个人建议 WITH_GPU,因为在运行的时候,有 GPU 就调用 GPU 了,没有 GPU 就调用 CPU了,兼容性好点。

三 调用

如果第一,二步没啥问题,就恭喜了,后面的调用就更简单了,直接看下代码吧:

bool demo_yolov5onnx(const std::string& model_file, const std::string& img_path, const int& loop, const int& use_gpu) {fastdeploy::RuntimeOption option; // Configuration information for model inference                 if (use_gpu == 1) {option.UseGpu();} else {option.UseCpu();}auto model = fastdeploy::vision::detection::YOLOv5(model_file, "hello", option);if (!model.Initialized()) {std::cerr << "Failed to initialize." << std::endl;return false;}std::cout << "init successful" << std::endl;cv::Mat im = cv::imread(img_path);fastdeploy::vision::DetectionResult result;clock_t t1, t2;for (int i = 0; i < loop; i++) {t1 = clock();if (!model.Predict(im, &result)) {std::cerr << "Failed to predict." << std::endl;return false;}t2 = clock();std::cout << "predict image cost time: " << t2 - t1 << std::endl;}std::cout << "=================================" << std::endl;std::cout << result.Str() << std::endl;std::cout << "=================================" << std::endl;cv::Mat vis_im = fastdeploy::vision::VisDetection(im, result, 0.5);cv::imwrite("vis_result.jpg", vis_im); // The visualization results are saved locallyreturn true;}

调用还是比较简单的,也就三五句有用的语句。

总结

FastDeploy封装的还是挺简单的,使用很方便,但是,毕竟是二次开发的工具,在功能上,还是会受限的,所以,要想能更精通的实现模型部署的工作,还是需要学习下底层的部署工具(OpenVINO,ONNXRuntime, TensorRT)的使用以及对模型框架本身的理解。

来源地址:https://blog.csdn.net/weixin_42823098/article/details/129141717

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

c++部署yolov5模型

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

YOLOv5模型优化与部署的方法是什么

今天小编给大家分享一下YOLOv5模型优化与部署的方法是什么的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。模型优化策略在实际
2023-07-05

YOLOv5车牌识别实战教程(四)模型优化与部署

这篇文章主要介绍了YOLOv5车牌识别实战教程(四)模型优化与部署,在这个教程中,我们将一步步教你如何使用YOLOv5进行车牌识别,帮助你快速掌握YOLOv5车牌识别技能,需要的朋友可以参考下
2023-05-14

怎么用PyTorch部署模型

本篇内容介绍了“怎么用PyTorch部署模型”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!使用Docker安装安装torchserve最好的
2023-06-29

Qt结合OpenCV怎么部署yolov5

本篇内容主要讲解“Qt结合OpenCV怎么部署yolov5”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Qt结合OpenCV怎么部署yolov5”吧!一、新建项目 UI设计二、代码部分 main
2023-06-29

YOLOv5性能优化与部署实例分析

本篇内容介绍了“YOLOv5性能优化与部署实例分析”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!模型压缩为了使YOLOv5车牌识别系统在资源
2023-07-05

tensorflow模型部署的方法是什么

在TensorFlow中,有几种常见的方法可以部署模型:使用TensorFlow Serving:TensorFlow Serving是一个用于部署机器学习模型的高性能开源软件库。它支持使用gRPC协议来提供模型的预测服务,并可以在生产环境
tensorflow模型部署的方法是什么
2024-03-13

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录