我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python数据可视化Pyecharts制作Heatmap热力图

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python数据可视化Pyecharts制作Heatmap热力图

本文介绍基于 Python3 的 Pyecharts 制作 Heatmap(热力图 时需要使用的设置参数和常用模板案例,可根据实际情况对案例中的内容进行调整即可。

使用 Pyecharts 进行数据可视化时可提供直观、交互丰富、可高度个性化定制的数据可视化图表。案例中的代码内容基于 Pyecharts 1.x 版本 。

HeatMap:热力图

1.基本设置

class HeatMap(
    # 初始化配置项,参考 `global_options.InitOpts`
    init_opts: opts.InitOpts = opts.InitOpts()
)
def add_yaxis(
    # 系列名称,用于 tooltip 的显示,legend 的图例筛选。
    series_name: str,
    # Y 坐标轴数据
    yaxis_data: types.Sequence[types.Union[opts.HeatMapItem, dict]],
    # 系列数据项
    value: types.Sequence[types.Union[opts.HeatMapItem, dict]],
    # 是否选中图例
    is_selected: bool = True,
    # 使用的 x 轴的 index,在单个图表实例中存在多个 x 轴的时候有用。
    xaxis_index: Optional[Numeric] = None,
    # 使用的 y 轴的 index,在单个图表实例中存在多个 y 轴的时候有用。
    yaxis_index: Optional[Numeric] = None,
    # 标签配置项,参考 `series_options.LabelOpts`
    label_opts: Union[opts.LabelOpts, dict] = opts.LabelOpts(),
    # 标记点配置项,参考 `series_options.MarkPointOpts`
    markpoint_opts: Union[opts.MarkPointOpts, dict, None] = None,
    # 标记线配置项,参考 `series_options.MarkLineOpts`
    markline_opts: Union[opts.MarkLineOpts, dict, None] = None,
    # 提示框组件配置项,参考 `series_options.TooltipOpts`
    tooltip_opts: Union[opts.TooltipOpts, dict, None] = None,
    # 图元样式配置项,参考 `series_options.ItemStyleOpts`
    itemstyle_opts: Union[opts.ItemStyleOpts, dict, None] = None,
)

2.热力图数据项

class HeatMapItem(
    # 数据项名称。
    name: Optional[str] = None,
    # 数据项的值。
    value: Optional[Sequence] = None,
    # 图元样式配置项,参考 `series_options.ItemStyleOpts`
    itemstyle_opts: Union[ItemStyleOpts, dict, None] = None,
    # 提示框组件配置项,参考 `series_options.TooltipOpts`
    tooltip_opts: Union[TooltipOpts, dict, None] = None,
)

Demo 举例

1.基础热力图

import random
from pyecharts import options as opts
from pyecharts.charts import HeatMap
from pyecharts.faker import Faker
value = [[i, j, random.randint(0, 50)] for i in range(24) for j in range(7)]
c = (
    HeatMap()
    .add_xaxis(Faker.clock)
    .add_yaxis(
        "",
        Faker.week,
        value,
        label_opts=opts.LabelOpts(is_show=True, position="inside"),
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="基础热力图"),
        visualmap_opts=opts.VisualMapOpts(),
    )
#     .render("基础热力图.html")
)
c.render_notebook()

以上就是Python数据可视化Pyecharts制作Heatmap热力图的详细内容,更多关于Python Pyecharts制作Heatmap热力图的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python数据可视化Pyecharts制作Heatmap热力图

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python 数据可视化神器—Pyecharts

能否在 Python 中也能用到 Echarts 的功能呢?寻找中惊喜地发现了 pyecharts,只需在python中安装该模块即可使用。

如何使用python数据可视化Seaborn画热力图

这篇文章主要为大家展示了“如何使用python数据可视化Seaborn画热力图”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“如何使用python数据可视化Seaborn画热力图”这篇文章吧。1.
2023-06-22

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录