我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python的去重以及数据合并的用法说明

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python的去重以及数据合并的用法说明

python去重及数据合并

drop_dupicates

参数含义:

  • subset:即表示要去重指定参考的列
  • keep : {‘first’, ‘last’, False}, default ‘first’

inplace:boolean, default False, 直接在原来的数据上修改还是保留副本

data = pd.DataFrame({'id':[1,1,2],'value':[12,14,27]})

#第一个参数传入需要比对的列,在"id"列有相同的id,则进行去重
data.drop_duplicates(['id'],keep='last',inplace=True)

#我想比较"id"、"value"两列的值全部相同时则去重
data.drop_duplicates(['id','value'],keep='last',inplace=True)

#如果想直接比较数据中的全部列都相同时才能去除,则可以按照如下方法.keep默认的是保留第一个
data.drop_duplicates()

merge

首先关于连接,从SQL中的可以得知,连接主要分为外连接和内连接:

内连接

内连接是指在两个数据表中,根据其指定合并的列,找到其交集,也就是既在df1中出现,也在df2中出现的数据

df1=pd.DataFrame({'key':['b','b','a','c','a','a','b'],
                  'data':range(7)})
df2=pd.DataFrame({'key':['a','b','d'],
                  'data2':range(3)})
df = pd.merge(df1,df2,on='key',how='inner') #不写how也没关系,因为merge默认的就是内连接 

假设如果在df1和df2中的指定要合并的列的列名不一致的话,则需要显式指定根据哪一列进行合并

df3=pd.DataFrame({'key1':['b','b','a','c','a','a','b'],
                  'data':range(7)})
df4=pd.DataFrame({'key2':['a','b','d'],
                  'data2':range(3)})
df = pd.merge(df3,df4,left_on='key1',right_on='key2')
# 该结果比上面的on='key'的结果多一列相同的列,但是两个的本质是一样的,都是内连接

外连接

外连接可以分为三种,全外连接、左连接和右连接。

全外连接就是保留两个表中指定合并的列关键字的并集,然后在左右两个表中找到相对应的数据进行填充,没有的用NAN代替

df1=pd.DataFrame({'key':['b','b','a','c','a','a','b'],
                  'data':range(7)})
df2=pd.DataFrame({'key':['a','b','d'],
                  'data2':range(3)})

df = pd.merge(df1,df2,on='key',how='outer')

右连接是保留右表中指定列的所有关键字,然后去左表中找到指定列对应的数据进行补充,没有的就NAN代替

df = pd.merge(df1,df2,on='key',how='right')

左连接是保留左表中指定列的所有关键字,然后去右表中找到指定列对应的数据进行补充,没有的就NAN代替

df = pd.merge(df1,df2,on='key',how='left')

python去重脚本

可以用来去除字典、漏洞数量等

使用方法,将要去重的部分保存成为csv格式,并命名为all.csv,直接执行后,会在当前目录下生成qc.csv的文件!

#coding:utf-8

ciku=open(r'all.csv','r')   #打开需要去重文件
xieci=open(r'qc.csv','w')   #打开处理后存放的文件
cikus=ciku.readlines() 
list2 = {}.fromkeys(cikus).keys()     #列表去重方法,将列表数据当作字典的键写入字典,依据字典键不可重复的特性去重
i=1
for line in list2:
    if line[0]!=',':
        # print line[0:-1].decode('utf-8').encode('gbk')
        # print  u"writing"+i
        i+=1
        xieci.writelines(line)
xieci.close()

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python的去重以及数据合并的用法说明

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python的去重以及数据合并的用法说明

这篇文章主要介绍了python的去重以及数据合并的用法说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2023-02-07

php合并数组去除重复数据的方法

这篇文章主要讲解了“php合并数组去除重复数据的方法”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“php合并数组去除重复数据的方法”吧!在php中,可以利用array_merge()和arr
2023-06-20

聚合函数在数据去重中的创新用法

聚合函数在数据去重中的创新用法是通过使用COUNT(DISTINCT column_name)函数来快速去除重复值。这函数会对指定列进行计数,只计算不同的值,从而实现去重的目的。这种方法相比传统的去重方法更简单快速,适用于大规模数据去重的场
聚合函数在数据去重中的创新用法
2024-08-03

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录