我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python torch.onnx.export用法详细介绍

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python torch.onnx.export用法详细介绍

函数原型

参数介绍

mode (torch.nn.Module, torch.jit.ScriptModule or torch.jit.ScriptFunction)

需要转换的模型,支持的模型类型有:torch.nn.Module, torch.jit.ScriptModule or torch.jit.ScriptFunction

args (tuple or torch.Tensor)

args可以被设置成三种形式

1.一个tuple

args = (x, y, z)

这个tuple应该与模型的输入相对应,任何非Tensor的输入都会被硬编码入onnx模型,所有Tensor类型的参数会被当做onnx模型的输入。

2.一个Tensor

args = torch.Tensor([1, 2, 3])

一般这种情况下模型只有一个输入

3.一个带有字典的tuple

args = (x,
        {'y': input_y,
         'z': input_z})

这种情况下,所有字典之前的参数会被当做“非关键字”参数传入网络,字典种的键值对会被当做关键字参数传入网络。如果网络中的关键字参数未出现在此字典中,将会使用默认值,如果没有设定默认值,则会被指定为None。

NOTE:

一个特殊情况,当网络本身最后一个参数为字典时,直接在tuple最后写一个字典则会被误认为关键字传参。所以,可以通过在tuple最后添加一个空字典来解决。

#错误写法:
 
torch.onnx.export(
    model,
    (x,
     # WRONG: will be interpreted as named arguments
     {y: z}),
    "test.onnx.pb")
 
# 纠正
 
torch.onnx.export(
    model,
    (x,
     {y: z},
     {}),
    "test.onnx.pb")

f

一个文件类对象或一个路径字符串,二进制的protocol buffer将被写入此文件

export_params (bool, default True)

如果为True则导出模型的参数。如果想导出一个未训练的模型,则设为False

verbose (bool, default False)

如果为True,则打印一些转换日志,并且onnx模型中会包含doc_string信息。

training (enum, default TrainingMode.EVAL)

枚举类型包括:

TrainingMode.EVAL - 以推理模式导出模型。

TrainingMode.PRESERVE - 如果model.training为False,则以推理模式导出;否则以训练模式导出。

TrainingMode.TRAINING - 以训练模式导出,此模式将禁止一些影响训练的优化操作。

input_names (list of str, default empty list)

按顺序分配给onnx图的输入节点的名称列表。

output_names (list of str, default empty list)

按顺序分配给onnx图的输出节点的名称列表。

operator_export_type (enum, default None)

默认为OperatorExportTypes.ONNX, 如果Pytorch built with DPYTORCH_ONNX_CAFFE2_BUNDLE,则默认为OperatorExportTypes.ONNX_ATEN_FALLBACK。

枚举类型包括:

OperatorExportTypes.ONNX - 将所有操作导出为ONNX操作。

OperatorExportTypes.ONNX_FALLTHROUGH - 试图将所有操作导出为ONNX操作,但碰到无法转换的操作(如onnx未实现的操作),则将操作导出为“自定义操作”,为了使导出的模型可用,运行时必须支持这些自定义操作。支持自定义操作方法见链接。

OperatorExportTypes.ONNX_ATEN - 所有ATen操作导出为ATen操作,ATen是Pytorch的内建tensor库,所以这将使得模型直接使用Pytorch实现。(此方法转换的模型只能被Caffe2直接使用)

OperatorExportTypes.ONNX_ATEN_FALLBACK - 试图将所有的ATen操作也转换为ONNX操作,如果无法转换则转换为ATen操作(此方法转换的模型只能被Caffe2直接使用)。例如:

# 转换前:
graph(%0 : Float):
  %3 : int = prim::Constant[value=0]()
  # conversion unsupported
  %4 : Float = aten::triu(%0, %3)
  # conversion supported
  %5 : Float = aten::mul(%4, %0)
  return (%5)
 
 
# 转换后:
graph(%0 : Float):
  %1 : Long() = onnx::Constant[value={0}]()
  # not converted
  %2 : Float = aten::ATen[operator="triu"](%0, %1)
  # converted
  %3 : Float = onnx::Mul(%2, %0)
  return (%3)

opset_version (int, default 9)

默认是9。值必须等于_onnx_main_opset或在_onnx_stable_opsets之内。具体可在torch/onnx/symbolic_helper.py中找到。例如:

_default_onnx_opset_version = 9
 
_onnx_main_opset = 13
 
_onnx_stable_opsets = [7, 8, 9, 10, 11, 12]
 
_export_onnx_opset_version = _default_onnx_opset_version

do_constant_folding (bool, default False)

是否使用“常量折叠”优化。常量折叠将使用一些算好的常量来优化一些输入全为常量的节点。

example_outputs (T or a tuple of T, where T is Tensor or convertible to Tensor, default None)

当需输入模型为ScriptModule 或 ScriptFunction时必须提供。此参数用于确定输出的类型和形状,而不跟踪(tracing )模型的执行。

dynamic_axes (dict<string, dict<python:int, string>> or dict<string, list(int)>, default empty dict)

通过以下规则设置动态的维度:

KEY(str) - 必须是input_names或output_names指定的名称,用来指定哪个变量需要使用到动态尺寸。

VALUE(dict or list) - 如果是一个dict,dict中的key是变量的某个维度,dict中的value是我们给这个维度取的名称。如果是一个list,则list中的元素都表示此变量的某个维度。

具体可参考如下示例:

class SumModule(torch.nn.Module):
    def forward(self, x):
        return torch.sum(x, dim=1)
 
# 以动态尺寸模式导出模型
 
torch.onnx.export(SumModule(), (torch.ones(2, 2),), "onnx.pb",
                  input_names=["x"], output_names=["sum"],
                  dynamic_axes={
                      # dict value: manually named axes
                      "x": {0: "my_custom_axis_name"},
                      # list value: automatic names
                      "sum": [0],
                  })
 
### 导出后的节点信息
 
##input
 
input {
  name: "x"
  ...
      shape {
        dim {
          dim_param: "my_custom_axis_name"  # axis 0
        }
        dim {
          dim_value: 2  # axis 1
...
 
##output
output {
  name: "sum"
  ...
      shape {
        dim {
          dim_param: "sum_dynamic_axes_1"  # axis 0
...
 

keep_initializers_as_inputs (bool, default None)

NONE

custom_opsets (dict<str, int>, default empty dict)

NONE

Torch.onnx.export执行流程:

1、如果输入到torch.onnx.export的模型是nn.Module类型,则默认会将模型使用torch.jit.trace转换为ScriptModule

2、使用args参数和torch.jit.trace将模型转换为ScriptModule,torch.jit.trace不能处理模型中的循环和if语句

3、如果模型中存在循环或者if语句,在执行torch.onnx.export之前先使用torch.jit.script将nn.Module转换为ScriptModule

4、模型转换成onnx之后,预测结果与之前会有稍微的差别,这些差别往往不会改变模型的预测结果,比如预测的概率在小数点之后五六位有差别。

总结

到此这篇关于Python torch.onnx.export用法详细介绍的文章就介绍到这了,更多相关Python torch.onnx.export用法内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python torch.onnx.export用法详细介绍

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Java 方法(详细介绍)

那么什么是方法呢?Java方法是语句的集合,它们在一起执行一个功能。 (推荐学习:java课程)方法是解决一类问题的步骤的有序组合方法包含于类或对象中方法在程序中被创建,在其他地方被引用方法的优点1. 使程序变得更简短而清晰。2.
Java 方法(详细介绍)
2017-06-19

fastjson 使用方法详细介绍

Fastjson介绍Fastjson是一个Java语言编写的JSON处理器。1、遵循http://json.org标准,为其官方网站收录的参考实现之一。2、功能qiang打,支持JDK的各种类型,包括基本的JavaBean、Collecti
2023-05-30

Android ADB详细介绍及用法

Android ADB 用法 adb 全称是 Android Debug Bridge, 就是起到调试桥的作用。 用来操作android设备的 阅读目录adb 有什么用adb 下载adb devicesadb install (安装软件
2022-06-06

Python Socket编程详细介绍

在使用Python做socket编程时,由于需要使用阻塞(默认)的方式来读取数据流,此时对于数据的结束每次都需要自己处理,太麻烦。并且网上也没找到太好的封装,所以就自己写了个简单的封装。 封装思路 1. 客户端每次请求均发送一个 Socke
2022-06-04

Python 模块EasyGui详细介绍

Python 模块EasyGui详细介绍 前言: 在Windows想用Python开发一些简单的界面,所以找到了很容易上手的EasyGui库。下面就分享一下简单的使用吧。 参考的链接:官网Tutorial 接下来,我将从简单,到复杂一点点的
2022-06-04

详细介绍HTML的基本用法

HTML是一种基本的网页设计语言,是创建网页的重要工具之一。对于想要学习HTML的初学者来说,了解HTML的基本用法是至关重要的。本文将详细介绍HTML的基本用法,让你轻松入手。一、HTML的基本概念HTML,全称是HyperText Markup Language,即超文本标记语言。HTML是一种标记语言,它用标记(Tag)描述网页,告诉网页浏览器如何显示文本和其他元素。在H
2023-05-14

详细介绍Github的使用方法

随着互联网技术的不断发展,越来越多的开发者开始加入到开源项目中,Github作为目前全球最大的代码托管平台之一,也成为了开发者们分享、学习、合作的重要工具之一。然而,如何使用Github来进行代码管理、版本控制、协作开发等,还是很多新手开发
2023-10-22

Android onCreate( )方法详细介绍

onCreate( )方法是android应用程序中最常见的方法之一,那么,我们在使用onCreate()方法的时候应该注意哪些问题呢? 先看看Google Android Developers官网上的解释: onCreat
2022-06-06

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录