我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python 用matplotlib绘制折线图详情

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python 用matplotlib绘制折线图详情

复习回顾:
众所周知,matplotlib 是一款功能强大开源的数据可视化模块,凭借着强大的扩展性构建出更高级别的绘图工具接口如seaborn、ggplot。我们来看看往期学习章节内容概述吧~

  • matplotlib 模块基础知识:对matplotlib模块具有便利的交互新创建图表、多种图表定制以及强大的可扩展性,matplotlib可满足不同用户的使用,初次体验绘制图表功能
  • matplotlib 模块底层原理:matplotlib 模块包含脚本层、美工层及后端层,对各个层相关提供的操作进行学习

在 matplotlib 官网教程中,可以绘制诸如折线图、柱状图、饼图等常规图外,还有可以绘制动态图、散点图、等高线图、帽子图、多个子图等

接下来,我们将继续学习matplotlib 图表绘制具体的功能实操,掌握针对不同图表的绘制

1. 折线图概述

1.1什么是折线图?

  • 折线图是在坐标中通过线条升降的方式展示随着某种变化而变化的连续性数据
  • 通过折线的起伏表示数据的增减变化的情况
  • 折线图可以拆分为动态折线图、依存关系折线图和次数分布折线图

1.2折线图使用场景

折线图自身的线条的变化,可以在图表中清晰读取到数据变化情况,可以运用的场景特点如下

  • 描绘统计事项总体指标的动态
  • 研究对象间的依存关系
  • 总体中各个部分的分配情况
  • 适合大量数据展示其趋势变化

1.3绘制折线图步骤

  • 导入matplotlib.pyplot模块
  • 准备数据,可以使用numpy/pandas整理数据
  • 调用pyplot.plot()绘制折线图

1.4案例展示

接下来我们使用折线图来展示从 10份 所有文章访问量数据展示

所有的案例用到的数据如下:


import random


x_data = ["10月{}日".format(i+1) for i in range(30)]

y_view = [random.randint(50,200) for i in range(30)]

展示10月份数据折线图:


  import matplotlib.pyplot as plt
 import random


 plt.rcParams["font.sans-serif"]=['SimHei']
 plt.rcParams["axes.unicode_minus"]=False

 x_data = ["10月{}日".format(i+1) for i in range(30)]

 y_view = [random.randint(50,200) for i in range(30)]

 plt.figure(figsize=(20,5),dpi=90)

 plt.plot(x_data,y_view)

 plt.xticks(rotation=45)
 plt.title("访问量分析")
 plt.xlabel("日期")
 plt.ylabel("访问量")

 plt.show()

2. 折线2D属性

2.1linestyle:折线样式

属性值 说明
"-" 、"solid" 默认实线显示
"--"、"dashed" 虚线
"-." "dashdot" 点划线
":"、"dotted" 虚线
"None" """"

2.2color:折线颜色

颜色简称:

属性值 说明 属性值 说明
"b"/"bule" 蓝色 "m"/"magenta" 品红
"g" /"green" 绿色 "y"/"yellow" 黄色
"r"/"red" 红色 "k"/"black" 黑色
"c"/"cyan" 青色 "w"/"white" 白色

rgb

  • 格式形式:(r,g,b) 或者(r,g,b,a)
  • 取值范围:r,g,b,a 取值范围在[0,1]之间
  • [0,1]之间的浮点数的字符串形式,0表示黑色,1表示白色

2.3marker:坐标值标记

  • marker 标记物通常在折线图plot、散点图scatter和误差图errorbar上应用
  • marker 提供多达40个标记的样式可供选择,具体详情看见marker官方说明
  • marker 在图表中常用的有如下:

属性值 说明 属性值 说明
"o" ⏺️圆圈标记 "8" 八边形
"v" ?倒三角标记 "s" ⏹️正方形标记
"^" ?正三角标记 "*" ⭐星号
"<" ◀️左三角标记 "+" ➕加号
">" ▶️右三角标记 "x" X星星
"1" 向下Y标记 "D" ?钻石标记
"2" 向上Y标记 " "
"3" 向左Y标记 "_" _水平线标记
"4" 向右Y标记 "p" ⭐五角星标记

标记还提供其他方法
  • markeredgecolor:标记边界颜色
  • markeredgewidth:标记宽度
  • markfacecorlor:标记填充色
  • markersize:标记大小

2.4fillstyle:标记填充方法

属性值 说明
"full" 整个标记
"left" 左边标记一半
"right" 右边标记一半
"bottom" 底部标记一半
"top" 顶部标记一半
"none" 无填充

2.5linewidth(lw): 直线宽度

对第一节案例添加直线属性:虚线表示,坐标用绿色左半填充圈标记


#

 直线属性
plt.plot(x_data,y_view,linestyle="--"
,marker="o",markeredgecolor="g",fillstyle="left")

更多属性:
在matplotlib官网对直线2D属性有更多的介绍

3. 坐标管理

3.1坐标轴名字设置

  • 设置X轴名称:pyplot.xlabel(str)
  • 设置y轴名称:pyplot.ylabel(str)

3.2坐标轴刻度设置

  • x轴坐标刻度设置:pyplot.xticks(ticks=[],rotation)
  • y轴坐标刻度设置:pyplot.yticks(ticks=[],rotation)

参数说明:

  • ticks:列表类型,表示x轴范围
  • rotation:翻转角度

3.3坐标轴位置设置

  • 坐标轴位置设置需要通过pyplot.gca()先获取当前的Axes
  • 然后调用ax.spines[].set_position()设置位置
  • ax.spines['bottom'].set_position(('axes',0.5)) 表示将x轴设置在y轴50%处

3.4指定坐标值标注

pyplot.annotate() 展示指定坐标点的(x,y)值

用接口参数说明:

参数 说明
txt 展示的文本
xy 注释的(x,y)
xytext xy展示的文本
color 展示的文本颜色

继续改造第一节案例:标记出最大访问,y轴移到x轴中心


max_id = np.argmax(y_view)


show_max = '['+str(x_data[max_id])+','+str(y_view[max_id])+']'


plt.figure(figsize=(20,5),dpi=90)

ax= plt.gca()

ax.spines["left"].set_position(('axes',0.5))

plt.plot(x_data,y_view,linestyle="--",marker="o",markeredgecolor="g",fillstyle="left")

plt.xticks(ticks=np.arange(0,30),rotation=60)

plt.annotate(show_max, xy=(x_data[max_id],y_view[max_id] ), xytext=(x_data[max_id],y_view[max_id]), color='r')

4. 多条折线展示图

在一个图表中,我们可以多次调用plot()绘制多条折线展示在同一个表格中


 ```python
star_view = [random.randint(100,200) for i in range(30)]

plt.plot(x_data,y_view,linestyle="--",marker="o",markeredgecolor="g",fillstyle="left")
plt.plot(x_data,star_view,linestyle="-",marker="s",markeredgecolor="r",fillstyle="right")
```
   

5. 图列管理

当一个图表中存在多个折线图时,我们需要使用图例管理来对每个折线代表对象

  1. pyplot.legend(loc): 对图表中折线进行说明
  2. loc参数属性值:

属性 代码 属性 代码
'best' 0 'right' 5
'upper right' 1 'center left' 6
'upper left' 2 'center right' 7
'lower left' 3 'lower center' 8
'lower right' 4 'upper center' 9
'center' 10

label属性,注释每条折线的对象


plt.plot(x_data,y_view,linestyle="--",marker="o",markeredgecolor="g",fillstyle="left",label="all")
plt.plot(x_data,star_view,linestyle="-",marker="s",markeredgecolor="r",fillstyle="right",label="star")

plt.legend()

总结:
本文 我们对matplotlib 模块 折线图plot()相关方法和属性进行,大家在平时工作中可以多多实践,折线图还是用的比较多的

到此这篇关于python 用matplotlib绘制折线图详情的文章就介绍到这了,更多相关python matplotlib绘制折线图内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python 用matplotlib绘制折线图详情

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python如何绘制Matplotlib折线图

本篇内容介绍了“Python如何绘制Matplotlib折线图”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!一、Matplotlib 绘图在
2023-06-30

python使用matplotlib绘制折线图教程

matplotlib简介 matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图。而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中。 它的文档相当完备,并且Galler
2022-06-04

如何使用python的matplotlib绘制折线图

这篇文章主要介绍“如何使用python的matplotlib绘制折线图”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“如何使用python的matplotlib绘制折线图”文章能帮助大家解决问题。pl
2023-07-02

怎么用Python+Matplotlib绘制三维折线图

这篇文章主要介绍了怎么用Python+Matplotlib绘制三维折线图的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇怎么用Python+Matplotlib绘制三维折线图文章都会有所收获,下面我们一起来看看吧
2023-07-05

Python+Matplotlib实现绘制三维折线图

立体图视觉上层次分明色彩鲜艳,具有很强的视觉冲击力,让观看的人驻景时间长,留下深刻的印象。今天我们就通过这篇文章来了解如何用python中的matplotlib库绘制漂亮的三维折线图吧
2023-03-21

怎么使用matplotlib绘制天气折线图

使用matplotlib绘制天气折线图的基本步骤如下:1. 导入所需的包和模块:```pythonimport matplotlib.pyplot as plt```2. 创建一个图表和一个子图:```pythonfig, ax = plt
2023-09-20

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录