我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Gradio机器学习模型快速部署工具怎么应用

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Gradio机器学习模型快速部署工具怎么应用

这篇文章主要介绍了Gradio机器学习模型快速部署工具怎么应用的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Gradio机器学习模型快速部署工具怎么应用文章都会有所收获,下面我们一起来看看吧。

1.嵌入 IFrame

     (/assets/img/anchor.svg)]()](https://gradio.app/sharing-your-app/#embedding-with-iframes)

要改为嵌入 IFrame(例如,如果您无法将 javascript 添加到您的网站),请添加此元素:

<iframe class="lazy" data-src="https://$your_space_host.hf.space"></iframe>

同样,您可以找到class="lazy" data-src=空间嵌入 URL 的属性,您可以在“嵌入此空间”按钮中找到它。

您还需要height手动添加一个固定的以及其他常规的 iframe 属性。例如:

<iframe class="lazy" data-src="https://abidlabs-pytorch-image-classifier.hf.space" frameBorder="0" height="900"></iframe>

2.API页面

Gradio机器学习模型快速部署工具怎么应用

渐变/你好世界 使用 Gradio构建。 托管在 Gradio机器学习模型快速部署工具怎么应用空间

如果您单击并打开上面的空间,您将在应用程序的页脚中看到一个“通过 API 使用”链接。

Gradio机器学习模型快速部署工具怎么应用

这是记录用户可用于查询函数的 REST API 的页面InterfaceBlocks应用程序也可以生成一个 API 页面,尽管 API 必须为每个事件侦听器显式命名,例如

btn.click(add, [num1, num2], output, api_name="addition")

这会将端点记录/api/addition/到自动生成的 API 页面。

注意:对于启用队列的Gradio 应用程序,如果用户向您的 API 端点发出 POST 请求,则可以绕过队列。要禁用此行为,请api_open=Falsequeue()方法中设置。

3.验证

您可能希望在您的应用程序前面放置一个身份验证页面,以限制谁可以打开您的应用程序。通过方法auth=中的关键字参数launch(),您可以提供一个包含用户名和密码的元组,或者一个可接受的用户名/密码元组列表;下面是一个为名为“admin”的单个用户提供基于密码的身份验证的示例:

demo.launch(auth=("admin", "pass1234"))

对于更复杂的身份验证处理,您甚至可以传递一个函数,该函数将用户名和密码作为参数,并返回 True 以允许身份验证,否则返回 False。这可用于向 3rd 方身份验证服务发出请求等。

下面是一个函数示例,它接受用户名和密码相同的任何登录:

def same_auth(username, password):    return username == passworddemo.launch(auth=same_auth)

为使身份验证正常工作,必须在您的浏览器中启用第三方 cookie。默认情况下,Safari、Chrome 隐身模式不是这种情况。

4.直接访问网络请求

当用户对您的应用做出预测时,您可能需要底层网络请求,以便获取请求标头(例如用于高级身份验证)、记录客户端的 IP 地址或其他原因。Gradio 以类似于 FastAPI 的方式支持这一点:只需添加一个类型提示为的函数参数gr.Request,Gradio 就会将网络请求作为该参数传入。这是一个例子:

import gradio as grdef echo(name, request: gr.Request):    if request:        print("Request headers dictionary:", request.headers)        print("IP address:", request.client.host)    return nameio = gr.Interface(echo, "textbox", "textbox").launch()

注意:如果您的函数是直接调用而不是通过 UI 调用(例如,当示例被缓存时会发生这种情况),那么request将是None. 您应该明确处理这种情况,以确保您的应用不会抛出任何错误。这就是为什么我们有明确的检查if request

5.在另一个 FastAPI 应用程序中安装[![图片转存失败,建议将图片保存下来直接上传

     (/assets/img/anchor.svg)]()](https://gradio.app/sharing-your-app/#mounting-within-another-fastapi-app)

在某些情况下,您可能有一个现有的 FastAPI 应用程序,并且您想要为 Gradio 演示添加一个路径。您可以使用 轻松地做到这一点gradio.mount_gradio_app()

这是一个完整的例子:

from fastapi import FastAPIimport gradio as grCUSTOM_PATH = "/gradio"app = FastAPI()@app.get("/")def read_main():    return {"message": "This is your main app"}io = gr.Interface(lambda x: "Hello, " + x + "!", "textbox", "textbox")app = gr.mount_gradio_app(app, io, path=CUSTOM_PATH)# Run this from the terminal as you would normally start a FastAPI app: `uvicorn run:app`# and navigate to http://localhost:8000/gradio in your browser.

请注意,此方法还允许您在自定义路径上运行 Gradio 应用程序(http://localhost:8000/gradio在上面的示例中)。

6.安全和文件访问

与他人共享您的 Gradio 应用程序(通过将其托管在 Spaces、您自己的服务器上或通过临时共享链接)会将主机上的某些文件**公开给您的 Gradio 应用程序的用户。**这样做是为了让 Gradio 应用程序能够显示由 Gradio 创建或由您的预测功能创建的输出文件。

特别是,Gradio 应用程序授予用户访问三种文件的权限:

  • Gradio 脚本启动所在的同一文件夹(或子目录)中的文件。例如,如果您的 gradio 脚本的路径是/home/usr/scripts/project/app.py并且您从 启动它/home/usr/scripts/project/,那么您共享的 Gradio 应用程序的用户将能够访问其中的任何文件/home/usr/scripts/project/。这是必需的,以便您可以轻松地在 Gradio 应用程序中引用这些文件。

  • Gradio 创建的临时文件。这些文件是由 Gradio 创建的,作为运行预测功能的一部分。例如,如果你的预测函数返回一个视频文件,那么 Gradio 会将该视频保存到一个临时文件中,然后将临时文件的路径发送到前端。

  • file_directories您通过中的参数明确允许的文件launch()。在某些情况下,您可能希望引用文件系统中的其他文件。该file_directories参数允许您传入您希望提供访问权限的其他目录列表。(默认情况下,没有其他文件目录)。

用户不应该能够访问主机上的其他任意路径。

关于“Gradio机器学习模型快速部署工具怎么应用”这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对“Gradio机器学习模型快速部署工具怎么应用”知识都有一定的了解,大家如果还想学习更多知识,欢迎关注编程网行业资讯频道。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Gradio机器学习模型快速部署工具怎么应用

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Gradio机器学习模型快速部署工具怎么应用

这篇文章主要介绍了Gradio机器学习模型快速部署工具怎么应用的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Gradio机器学习模型快速部署工具怎么应用文章都会有所收获,下面我们一起来看看吧。1.嵌入 IFra
2023-07-05

Gradio机器学习模型快速部署工具应用分享

这篇文章主要为大家介绍了Gradio机器学习模型快速部署工具应用分享原文翻译,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-05-14

Gradio机器学习模型快速部署工具quickstart

这篇文章主要为大家介绍了Gradio机器学习模型快速部署工具quickstart,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-05-14

Gradio机器学习模型快速部署工具quickstart怎么使用

本文小编为大家详细介绍“Gradio机器学习模型快速部署工具quickstart怎么使用”,内容详细,步骤清晰,细节处理妥当,希望这篇“Gradio机器学习模型快速部署工具quickstart怎么使用”文章能帮助大家解决疑惑,下面跟着小编的
2023-07-05

Gradio机器学习模型快速部署工具应用分享前篇

这篇文章主要为大家介绍了Gradio机器学习模型快速部署工具应用分享前篇,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-05-14

Gradio机器学习模型快速部署工具quickstart前篇

这篇文章主要为大家介绍了Gradio机器学习模型快速部署工具quickstart准备原文翻译,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-05-14

Gradio机器学习模型快速部署工具接口状态

这篇文章主要为大家介绍了Gradio机器学习模型快速部署工具接口状态的原文翻译,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-05-14

Gradio快速部署工具怎么应用

这篇文章主要介绍“Gradio快速部署工具怎么应用”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Gradio快速部署工具怎么应用”文章能帮助大家解决问题。1.分享演示share=True通过在方法中
2023-07-05

Gradio机器学习模型快速部署工具接口状态源码分析

本文小编为大家详细介绍“Gradio机器学习模型快速部署工具接口状态源码分析”,内容详细,步骤清晰,细节处理妥当,希望这篇“Gradio机器学习模型快速部署工具接口状态源码分析”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习
2023-07-05

Gradio快速部署工具quickstart怎么应用

这篇文章主要介绍了Gradio快速部署工具quickstart怎么应用的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Gradio快速部署工具quickstart怎么应用文章都会有所收获,下面我们一起来看看吧。引
2023-07-05

机器学习模型解释工具SHAP怎么使用

SHAP(SHapley Additive exPlanations)是一种机器学习模型解释工具,它可以解释模型的预测结果,帮助理解模型是如何做出预测的。以下是使用SHAP的一般步骤:安装SHAP库:可以通过pip安装shap库,如:pip
2023-10-21

如何使用PyCaret快速轻松地构建机器学习项目并为部署准备最终模型

这篇文章主要介绍“如何使用PyCaret快速轻松地构建机器学习项目并为部署准备最终模型”,在日常操作中,相信很多人在如何使用PyCaret快速轻松地构建机器学习项目并为部署准备最终模型问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作
2023-06-15

机器学习多项式拟合模型怎么应用

机器学习的多项式拟合模型可以应用于回归问题中,其中输入数据和目标值之间存在非线性关系。多项式拟合模型可以通过拟合一个多项式函数来逼近数据中的非线性关系。以下是应用多项式拟合模型的一般步骤:1. 收集数据集:收集包含输入数据和相应目标值的数据
2023-09-25

使用Python部署机器学习模型的10个实践经验分别怎么样的

今天就跟大家聊聊有关使用Python部署机器学习模型的10个实践经验分别怎么样的,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。有时候,作为数据科学家,我们会忘记公司付钱让我们干什么。
2023-06-16

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录