我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python pandas遍历每行并累加进行条件过滤方式

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python pandas遍历每行并累加进行条件过滤方式

pandas遍历每行并累加进行条件过滤

 本次记录主要实现对每行进行排序,并保留前80%以前的偏好。

思路:

将每行的概率进行排序,然后累加,累加值小于等于0.8的偏好保留,获得一个累加过滤的dataframe,然后映射回原始数据中,保留每行的偏好。接下来是代码的实现

a = [[0.2, 0.35, 0.45], [0.1,0.2, 0.7], [0.3, 0.5, 0.2]]
data = pd.DataFrame(a, index=['user1','user2','user3'], columns=["a", "b", "c"])
sum_df=[]
for index,row in data.iterrows():
    df = row.sort_values(ascending=False).cumsum()
    if df[0]>0.8:
        new_df = df[:1]
    else:
        new_df = df[df<=0.8]
    sum_df.append(new_df)
sum_df = pd.DataFrame(sum_df)
print(sum_df)           

这是累加之后每个用户保留的前80%偏好的类型,接下来如何将这个特征映射回去,将累加后的dataframe通过空值将其转化为0-1dataframe,再和原数据集一一对应相乘,就可以映射回去了,代码如下

d = (sum_df.notnull())*1
print(d)

final_df = d*data #将保留地特征映射到原始数据中
print(final_df)

本节内容目标明确,实现了每个用户的前80%偏好,不知道正在看的小伙伴有没有懂?可以一起讨论哦!

接下来,考虑优化这个实现的代码,前面的思路是通过两个dataframe相乘实现的,当数据集非常大的时候,效率很低,于是不用list,利用字典的形式实现

sum_df=[]
for index,row in data.iterrows():
    df = row.sort_values(ascending=False).cumsum()
    origin = row.to_dict() #原始每个用户值
    if df[0]>0.8:
        new_df = df[:1]
    else:
        new_df = df[df<=0.8]
    name = new_df.name  #user
    tmp = new_df.to_dict()
    for key in tmp.keys(): # 原始值映射
        tmp[key] = origin[key]
    tmp['user'] = name
    sum_df.append(tmp)
sum_df = pd.DataFrame(sum_df).set_index('user').fillna(0)
print(sum_df)   

通过字典映射效率很高,新测有效!

python DataFrame遍历

在数据分析的过程中,往往需要用到DataFrame的类型,因为这个类型就像EXCEL表格一样,便于我们个中连接、计算、统计等操作。在数据分析的过程中,避免不了的要对数据进行遍历,那么,DataFrame如何遍历呢?之前,小白每次使用时都是Google或百度,想想,还是总结一下~

小白经常用到的有三种方式,如下:

首先,先读入一个DataFrame

import pandas as pd
#读入数据
df = pd.read_table('d:/Users/chen_lib/Desktop/tmp.csv',sep=',', header='infer')
df.head()
 
-----------------result------------------
        mas  effectdate     num
0    371379    2019-07-15    361
1    344985    2019-07-13    77
2    425090    2019-07-01    105
3    344983    2019-02-19    339
4    432430    2019-02-21    162

1.DataFrame.iterrows()       

将DataFrame的每一行迭代为{索引,Series}对,对DataFrame的列,用row['cols']读取元素

for index, row in df.iterrows():
    print(index,row['mas'],row['num']) 
  
 
------------result---------------
0 371379 361
1 344985 77
2 425090 105
3 344983 339
4 432430 162

从结果可以看出,第一列就是对应的index,也就是索引,从0开始,第二第三列是自定义输出的列,这样就完成了对DataFrame的遍历。

2.DataFrame.itertuples()

将DataFrame的每一行迭代为元祖,可以通过row['cols']对元素进行访问,方法一效率高。

for row in df.itertuples():
    print(getattr(row, 'mas'), getattr(row, 'num')) # 输出每一行
 
 
-------------result-----------------
371379 361
344985 77
425090 105
344983 339
432430 162

从结果可以看出,这种方法是没有index的,直接输出每一行的结果。

3.DataFrame.iteritems()

这种方法和上面两种不同,这个是按列遍历,将DataFrame的每一列迭代为(列名, Series)对,可以通过row['cols']对元素进行访问。

for index, row in df.iteritems():
    print(index,row[0],row[1],row[2])
 
 
-------------result------------------
masterhotelid 371379 344985 425090
effectdate 2019-07-15 2019-07-13 2019-07-01
quantity 361 77 105

从结果可以看出,index输出的是列名,row是用来读取第几行的数据,结果是按列展示 

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。 

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python pandas遍历每行并累加进行条件过滤方式

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python pandas怎么遍历每行并累加进行条件过滤

今天小编给大家分享一下python pandas怎么遍历每行并累加进行条件过滤的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。
2023-06-30

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录