我的编程空间,编程开发者的网络收藏夹
学习永远不晚

InnoDB索引实现

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

InnoDB索引实现

         对于InnoDB存储引擎的表,记录默认会按一定顺序保存,如果有明确定义的主键,则按照主键顺序保存。如果没有主键,但是有唯一索引,就按照唯一索引的顺序保存。如果既没有主键也没有唯一索引,表中会自动生成一个内部列,按照这个列的顺序保存。按照主键或内部列的访问是最快的,索引InnoDB表尽量自己指定主键,当表中同时有几个列都是唯一的,都可以作为主键的时候,要选择最常作为访问条件的列作为主键,提高查询效率。另外,InnoDB表的普通索引都会保存主键的键值,这样通过对索引加锁就可以实现行级锁。

         可以说数据库必须有索引,没有索引则检索过程变成了顺序查找,O(n)的时间复杂度几乎是不能忍受的。我们非常容易想象出一个只有单关键字组成的表如何使用B+树进行索引,只要将关键字存储到树的节点即可。当数据库一条记录里包含多个字段时,一棵B+树就只能存储主键,如果检索的是非主键字段,则主键索引失去作用,又变成顺序查找了。这时应该在第二个要检索的列上建立第二套索引。  这个索引由独立的B+树来组织。有两种常见的方法可以解决多个B+树访问同一套表数据的问题,一种叫做聚簇索引(clustered index ),一种叫做非聚簇索引(secondary index)。这两个名字虽然都叫做索引,但这并不是一种单独的索引类型,而是一种数据存储方式。对于聚簇索引存储来说,行数据和主键B+树存储在一起,辅助键B+树只存储辅助键和主键,主键和非主键B+树几乎是两种类型的树。对于非聚簇索引存储来说,主键B+树在叶子节点存储指向真正数据行的指针,而非主键。

      InnoDB使用的是聚簇索引,将主键组织到一棵B+树中,而行数据就储存在叶子节点上,若使用"where id = 14"这样的条件查找主键,则按照B+树的检索算法即可查找到对应的叶节点,之后获得行数据。若对Name列进行条件搜索,则需要两个步骤:第一步在辅助索引B+树中检索Name,到达其叶子节点获取对应的主键。第二步使用主键在主索引B+树种再执行一次B+树检索操作,最终到达叶子节点即可获取整行数据。

      MyISM使用的是非聚簇索引,非聚簇索引的两棵B+树看上去没什么不同,节点的结构完全一致只是存储的内容不同而已,主键索引B+树的节点存储了主键,辅助键索引B+树存储了辅助键。表数据存储在独立的地方,这两颗B+树的叶子节点都使用一个地址指向真正的表数据,对于表数据来说,这两个键没有任何差别。由于索引树是独立的,通过辅助键检索无需访问主键的索引树。

         为了更形象说明这两种索引的区别,我们假想一个表如下图存储了4行数据。其中Id作为主索引,Name作为辅助索引。图示清晰的显示了聚簇索引和非聚簇索引的差异。

InnoDB索引实现

聚簇索引优点:

1 查询速度更快:由于行数据和叶子节点存储在一起,这样主键和行数据是一起被载入内存的,找到叶子节点就可以立刻将行数据返回了,如果按照主键Id来组织数据,获得数据更快。

2 减少索引维护:辅助索引使用主键作为"指针" 而不是使用地址值作为指针的好处是,减少了当出现行移动或者数据页分裂时辅助索引的维护工作,使用主键值当作指针会让辅助索引占用更多的空间,换来的好处是InnoDB在移动行时无须更新辅助索引中的这个"指针"。也就是说行的位置(实现中通过16K的Page来定位,后面会涉及)会随着数据库里数据的修改而发生变化(前面的B+树节点分裂以及Page的分裂),使用聚簇索引就可以保证不管这个主键B+树的节点如何变化,辅助索引树都不受影响。

 

InnoDB行锁的实现:

 

InnoDB的行锁是加在索引上的,实现过程如下:

 

1.按辅助索引检索:行锁加在辅助索引对应的列,并根据主键项找到主键索引加锁。

如上图,按name字段检索name='Ellision',Ellision索引列会加锁,并在主键索引项14 加锁。这样当其他事务就无法访问name='Ellision'列,也无法根据其他数据项访问相应的数据列。


免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

InnoDB索引实现

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

MyISAM 和 InnoDB 索引结构及其实现原理

数据库索引,是数据库管理系统中一个排序的数据结构,以协助快速查询、更新数据库表中数据。索引的实现通常使用B_TREE。B_TREE索引加速了数据访问,因为存储引擎不会再去扫描整张表得到需要的数据;相反,它从根节点开始,根节点保存了子节点的指针,存储引擎会根据指
MyISAM 和 InnoDB 索引结构及其实现原理
2016-02-15

关于InnoDB索引的底层实现和实际效果

这篇文章主要介绍了关于InnoDB索引的底层实现和实际效果,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2022-12-27

MySQL-InnoDB为什么采用B+树结构实现索引

索引的作用是提高查询效率,其实现方式有很多种,常见的索引模型有哈希表、有序列表、搜索树等。 哈希表 一种以key-value键值对的方式存储数据的结构,通过指定的key可以找到对应的value。 哈希把值放在数组里,用一个哈希函数把key换算成一个确定位
MySQL-InnoDB为什么采用B+树结构实现索引
2018-07-22

详解MySQL InnoDB的索引扩展

索引扩展,InnoDB通过将主键列附加到每个辅助索引中来自动扩展该索引。创建如下表结构:mysql> CREATE TABLE t1 (-> i1 INT NOT NULL DEFAULT 0,-> i2 INT NOT NULL DEFA
2022-05-13

MySQL的InnoDB索引原理详解

摘要:本篇介绍下Mysql的InnoDB索引相关知识,从各种树到索引原理到存储的细节。InnoDB是Mysql的默认存储引擎(Mysql5.5.5之前是MyISAM,文档)。本着高效学习的目的,本篇以介绍InnoDB为主,少量涉及MyISA
2022-05-18

[MySQL] innoDB引擎的主键与聚簇索引

mysql的innodb引擎本身存储的形式就必须是聚簇索引的形式 , 在磁盘上树状存储的 , 但是不一定是根据主键聚簇的 , 有三种情形:1. 有主键的情况下 , 主键就是聚簇索引2. 没有主键的情况下 , 第一个非空null的唯一索引就是聚簇索引3. 如果上
[MySQL] innoDB引擎的主键与聚簇索引
2020-07-02

技术分享 | InnoDB 的索引高度

作者:洪斌爱可生南区负责人兼技术服务总监,MySQL  ACE,擅长数据库架构规划、故障诊断、性能优化分析,实践经验丰富,帮助各行业客户解决 MySQL 技术问题,为金融、运营商、互联网等行业客户提供 MySQL 整体解决方案。本文来源:转载自公众号-玩转My
技术分享 | InnoDB 的索引高度
2015-09-25

编程热搜

目录