怎么在PyTorch中设置随机数种子使结果可复现
本篇文章为大家展示了怎么在PyTorch中设置随机数种子使结果可复现,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。
CUDNN
cudnn中对卷积操作进行了优化,牺牲了精度来换取计算效率。如果需要保证可重复性,可以使用如下设置:
from torch.backends import cudnncudnn.benchmark = False # if benchmark=True, deterministic will be Falsecudnn.deterministic = True
不过实际上这个设置对精度影响不大,仅仅是小数点后几位的差别。所以如果不是对精度要求极高,其实不太建议修改,因为会使计算效率降低。
Pytorch
torch.manual_seed(seed) # 为CPU设置随机种子torch.cuda.manual_seed(seed) # 为当前GPU设置随机种子torch.cuda.manual_seed_all(seed) # 为所有GPU设置随机种子
Python & Numpy
如果读取数据的过程采用了随机预处理(如RandomCrop、RandomHorizontalFlip等),那么对python、numpy的随机数生成器也需要设置种子。
import randomimport numpy as nprandom.seed(seed)np.random.seed(seed)
Dataloader
如果dataloader采用了多线程(num_workers > 1), 那么由于读取数据的顺序不同,最终运行结果也会有差异。
也就是说,改变num_workers参数,也会对实验结果产生影响。
目前暂时没有发现解决这个问题的方法,但是只要固定num_workers数目(线程数)不变,基本上也能够重复实验结果。
补充:pytorch 固定随机数种子踩过的坑
1.初步固定
def setup_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.cuda.manual_seed(seed) np.random.seed(seed) random.seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.enabled = False torch.backends.cudnn.benchmark = False #torch.backends.cudnn.benchmark = True #for accelerating the running setup_seed(2019)
2.继续添加如下代码:
tensor_dataset = ImageList(opt.training_list,transform)def _init_fn(worker_id): random.seed(10 + worker_id) np.random.seed(10 + worker_id) torch.manual_seed(10 + worker_id) torch.cuda.manual_seed(10 + worker_id) torch.cuda.manual_seed_all(10 + worker_id)dataloader = DataLoader(tensor_dataset, batch_size=opt.batchSize, shuffle=True, num_workers=opt.workers, worker_init_fn=_init_fn)
3.在上面的操作之后发现加载的数据多次试验大部分一致了
但是仍然有些数据是不一致的,后来发现是pytorch版本的问题,将原先的0.3.1版本升级到1.1.0版本,问题解决
4.按照上面的操作后虽然解决了问题
但是由于将cudnn.benchmark设置为False,运行速度降低到原来的1/3,所以继续探索,最终解决方案是把第1步变为如下,同时将该部分代码尽可能放在主程序最开始的部分,例如:
import torchimport torch.nn as nnfrom torch.nn import initimport pdbimport torch.nn.parallelimport torch.nn.functional as Fimport torch.backends.cudnn as cudnnimport torch.optim as optimimport torch.utils.datafrom torch.utils.data import DataLoader, Datasetimport sysgpu_id = "3,2"os.environ["CUDA_VISIBLE_DEVICES"] = gpu_idprint('GPU: ',gpu_id)def setup_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.cuda.manual_seed(seed) np.random.seed(seed) random.seed(seed) cudnn.deterministic = True #cudnn.benchmark = False #cudnn.enabled = Falsesetup_seed(2019)
pytorch的优点
1.PyTorch是相当简洁且高效快速的框架;2.设计追求最少的封装;3.设计符合人类思维,它让用户尽可能地专注于实现自己的想法;4.与google的Tensorflow类似,FAIR的支持足以确保PyTorch获得持续的开发更新;5.PyTorch作者亲自维护的论坛 供用户交流和求教问题6.入门简单
上述内容就是怎么在PyTorch中设置随机数种子使结果可复现,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注编程网行业资讯频道。
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341