我的编程空间,编程开发者的网络收藏夹
学习永远不晚

PyTorch中torch.matmul()函数怎么使用

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

PyTorch中torch.matmul()函数怎么使用

这篇文章主要介绍了PyTorch中torch.matmul()函数怎么使用的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇PyTorch中torch.matmul()函数怎么使用文章都会有所收获,下面我们一起来看看吧。

一、函数介绍

pytorch中两个张量的乘法可以分为两种:

  • 两个张量对应元素相乘,在PyTorch中可以通过torch.mul函数(或*运算符)实现;

  • 两个张量矩阵相乘,在PyTorch中可以通过torch.matmul函数实现;

torch.matmul(input, other) → Tensor
计算两个张量input和other的矩阵乘积
【注意】:matmul函数没有强制规定维度和大小,可以用利用广播机制进行不同维度的相乘操作。

二、常见用法

torch.matmul()也是一种类似于矩阵相乘操作的tensor连乘操作。但是它可以利用python中的广播机制,处理一些维度不同的tensor结构进行相乘操作。这也是该函数与torch.bmm()区别所在。

2.1 两个一维向量的乘积运算

若两个tensor都是一维的,则返回两个向量的点积运算结果:

import torchx = torch.tensor([1,2])y = torch.tensor([3,4])print(x,y)print(torch.matmul(x,y),torch.matmul(x,y).size())

运行结果:

tensor([1, 2]) tensor([3, 4])
tensor(11) torch.Size([])

PyTorch中torch.matmul()函数怎么使用

2.2 两个二维矩阵的乘积运算

若两个tensor都是二维的,则返回两个矩阵的矩阵相乘结果:

import torchx = torch.tensor([[1,2],[3,4]])y = torch.tensor([[5,6,7],[8,9,10]])print(torch.matmul(x,y),torch.matmul(x,y).size())

运行结果:

tensor([[21, 24, 27],[47, 54, 61]]) torch.Size([2, 3])

PyTorch中torch.matmul()函数怎么使用

2.3 一个一维向量和一个二维矩阵的乘积运算

若input为一维,other为二维,则先将input的一维向量扩充到二维(维数前面插入长度为1的新维度),然后进行矩阵乘积,得到结果后再将此维度去掉,得到的与input的维度相同。

import torchx = torch.tensor([1,2])y = torch.tensor([[5,6,7],[8,9,10]])print(torch.matmul(x,y),torch.matmul(x,y).size())

运行结果:

tensor([21, 24, 27]) torch.Size([3])

【分析】:首先将x维度从(2)扩充为(,2),然后将x(,2) 与y(2,3)进行相乘,得到(,3),最后去掉一维部分,得到(3)

PyTorch中torch.matmul()函数怎么使用

2.4 一个二维矩阵和一个一维向量的乘积运算

若input为二维,other为一维,则先将other的一维向量扩充到二维(维数后面插入长度为1的新维度),然后进行矩阵乘积,得到结果后再将此维度去掉,得到的与other的维度相同。

import torchx = torch.tensor([[1,2,3],[4,5,6]])y = torch.tensor([7,8,9])print(torch.matmul(x,y),'\n',torch.matmul(x,y).size())

运行结果:

tensor([ 50, 122])
torch.Size([2])

【分析】:首先y维度从(3)扩充为(3,),然后将x(2,3)与x(2,)进行相乘,得到(2,),最后去掉一维部分,得到(2)

【总结】:2.3和2.4基本类似,唯一不同的是2.3中一维向量和二维矩阵的乘积运算需要在一维向量前面插入长度为1的新维度(x为一维向量,y为二维矩阵);2.4中二维矩阵和一维向量的乘积运算需要在一维向量后面插入长度为1的新维度(x为二维矩阵,y为一维向量)。

关于“PyTorch中torch.matmul()函数怎么使用”这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对“PyTorch中torch.matmul()函数怎么使用”知识都有一定的了解,大家如果还想学习更多知识,欢迎关注编程网行业资讯频道。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

PyTorch中torch.matmul()函数怎么使用

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

PyTorch中torch.matmul()函数怎么使用

这篇文章主要介绍了PyTorch中torch.matmul()函数怎么使用的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇PyTorch中torch.matmul()函数怎么使用文章都会有所收获,下面我们一起来看
2023-07-06

PyTorch中torch.matmul()函数常见用法总结

torch.matmul()也是一种类似于矩阵相乘操作的tensor连乘操作。但是它可以利用python中的广播机制,处理一些维度不同的tensor结构进行相乘操作,这篇文章主要介绍了PyTorch中torch.matmul()函数用法总结,需要的朋友可以参考下
2023-05-15

pytorch中Parameter函数怎么使用

这篇文章主要介绍了pytorch中Parameter函数怎么使用的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇pytorch中Parameter函数怎么使用文章都会有所收获,下面我们一起来看看吧。用法介绍pyt
2023-06-29

pytorch中的view()函数怎么使用

这篇文章主要介绍了pytorch中的view()函数怎么使用的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇pytorch中的view()函数怎么使用文章都会有所收获,下面我们一起来看看吧。一、普通用法 (手动调
2023-06-29

pytorch中BatchNorm2d函数的参数怎么使用

本篇内容主要讲解“pytorch中BatchNorm2d函数的参数怎么使用”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“pytorch中BatchNorm2d函数的参数怎么使用”吧!BN原理、作
2023-07-04

pytorch中torch.topk()函数怎么用

这篇文章主要介绍“pytorch中torch.topk()函数怎么用”,在日常操作中,相信很多人在pytorch中torch.topk()函数怎么用问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”pytorch
2023-06-29

Pytorch中怎么调用forward()函数

这篇文章主要讲解了“Pytorch中怎么调用forward()函数”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Pytorch中怎么调用forward()函数”吧!Pytorch调用forw
2023-07-05

Pytorch中的torch.gather()函数怎么用

这篇文章将为大家详细讲解有关Pytorch中的torch.gather()函数怎么用,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。参数说明以官方说明为例,gather()函数需要三个参数,输入input,
2023-06-25

pytorch中的torch.nn.Conv2d()函数怎么用

这篇文章主要为大家展示了“pytorch中的torch.nn.Conv2d()函数怎么用”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“pytorch中的torch.nn.Conv2d()函数怎么
2023-06-29

Pytorch中的torch.where函数使用

PyTorch中的torch.where()函数是一个功能强大的操作符,用于根据条件选择元素。它采用三个参数:条件张量(指示选择元素的位置)、x变量(满足条件时选择的值)和y变量(不满足条件时选择的值)。输出张量中的元素根据条件从x或y变量中选择。此函数广泛用于掩码操作、条件分配、逻辑运算和神经网络中的条件激活等应用中。
Pytorch中的torch.where函数使用
2024-04-02

pytorch中nn.Flatten()函数如何使用

这篇文章主要介绍了pytorch中nn.Flatten()函数如何使用的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇pytorch中nn.Flatten()函数如何使用文章都会有所收获,下面我们一起来看看吧。t
2023-07-04

Pytorch中backward()多个loss函数怎么用

这篇文章主要介绍Pytorch中backward()多个loss函数怎么用,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!Pytorch的backward()函数假若有多个loss函数,如何进行反向传播和更新呢? x
2023-06-15

Pytorch中torch.repeat_interleave()函数使用及说明

这篇文章主要介绍了Pytorch中torch.repeat_interleave()函数使用及说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2023-01-03

Pytorch中torch.argmax()函数使用及说明

这篇文章主要介绍了Pytorch中torch.argmax()函数使用及说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2023-01-03

如何在pytorch中使用numel函数

本篇文章给大家分享的是有关如何在pytorch中使用numel函数,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。获取tensor中一共包含多少个元素import torchx
2023-06-15

pytorch中关于distributedsampler函数的使用

这篇文章主要介绍了pytorch中关于distributedsampler函数的使用,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2023-02-02

Pytorch中的backward()多个loss函数怎么用

这篇文章主要介绍了Pytorch中的backward()多个loss函数怎么用,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。Pytorch的backward()函数假若有多个
2023-06-15

Pytorch中torch.cat()函数的使用及说明

这篇文章主要介绍了Pytorch中torch.cat()函数的使用及说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2023-01-03

PyTorch常用函数torch.cat()中dim参数使用说明

这篇文章主要为大家介绍了PyTorch常用函数torch.cat()中dim参数使用说明,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-05-17

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录