我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python 作图实现坐标轴截断(打断)的效果

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python 作图实现坐标轴截断(打断)的效果

主题:利用python画图实现坐标轴截断或打断

关键词:python, plot, matplotlib, break axes

方法一:

首先介绍一种简单快速的方法——调用包 brokenaxes。

详细请点击参考


import matplotlib.pyplot as plt
from brokenaxes import brokenaxes
import numpy as np
fig = plt.figure(figsize=(5,2))
bax = brokenaxes(xlims=((0, .1), (.4, .7)), ylims=((-1, .7), (.79, 1)), hspace=.05, despine=False)
x = np.linspace(0, 1, 100)
bax.plot(x, np.sin(10 * x), label='sin')
bax.plot(x, np.cos(10 * x), label='cos')
bax.legend(loc=3)
bax.set_xlabel('time')
bax.set_ylabel('value')

效果如下:

方法二:

拼接法,该种方法代码更繁琐,但更有可能满足个性化的需求。

请点击参考链接


"""
Broken axis example, where the y-axis will have a portion cut out.
"""
import matplotlib.pyplot as plt
import numpy as np
# 30 points between [0, 0.2) originally made using np.random.rand(30)*.2
pts = np.array([
    0.015, 0.166, 0.133, 0.159, 0.041, 0.024, 0.195, 0.039, 0.161, 0.018,
    0.143, 0.056, 0.125, 0.096, 0.094, 0.051, 0.043, 0.021, 0.138, 0.075,
    0.109, 0.195, 0.050, 0.074, 0.079, 0.155, 0.020, 0.010, 0.061, 0.008])
# Now let's make two outlier points which are far away from everything.
pts[[3, 14]] += .8
# If we were to simply plot pts, we'd lose most of the interesting
# details due to the outliers. So let's 'break' or 'cut-out' the y-axis
# into two portions - use the top (ax) for the outliers, and the bottom
# (ax2) for the details of the majority of our data
f, (ax, ax2) = plt.subplots(2, 1, sharex=True)
# plot the same data on both axes
ax.plot(pts)
ax2.plot(pts)
# zoom-in / limit the view to different portions of the data
ax.set_ylim(.78, 1.)  # outliers only
ax2.set_ylim(0, .22)  # most of the data
# hide the spines between ax and ax2
ax.spines['bottom'].set_visible(False)
ax2.spines['top'].set_visible(False)
ax.xaxis.tick_top()
ax.tick_params(labeltop='off')  # don't put tick labels at the top
ax2.xaxis.tick_bottom()
# This looks pretty good, and was fairly painless, but you can get that
# cut-out diagonal lines look with just a bit more work. The important
# thing to know here is that in axes coordinates, which are always
# between 0-1, spine endpoints are at these locations (0,0), (0,1),
# (1,0), and (1,1).  Thus, we just need to put the diagonals in the
# appropriate corners of each of our axes, and so long as we use the
# right transform and disable clipping.
d = .015  # how big to make the diagonal lines in axes coordinates
# arguments to pass to plot, just so we don't keep repeating them
kwargs = dict(transform=ax.transAxes, color='k', clip_on=False)
ax.plot((-d, +d), (-d, +d), **kwargs)        # top-left diagonal
ax.plot((1 - d, 1 + d), (-d, +d), **kwargs)  # top-right diagonal
kwargs.update(transform=ax2.transAxes)  # switch to the bottom axes
ax2.plot((-d, +d), (1 - d, 1 + d), **kwargs)  # bottom-left diagonal
ax2.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs)  # bottom-right diagonal
# What's cool about this is that now if we vary the distance between
# ax and ax2 via f.subplots_adjust(hspace=...) or plt.subplot_tool(),
# the diagonal lines will move accordingly, and stay right at the tips
# of the spines they are 'breaking'
plt.show()

效果如下:

补充:python绘制折线图--纵坐标y轴截断

看代码吧~


# -*- coding: utf-8 -*-
"""
Created on Wed Dec  4 21:50:38 2019
@author: muli
"""
import matplotlib.pyplot as plt
from pylab import *                 
mpl.rcParams['font.sans-serif'] = ['SimHei'] #支持中文
 
names = ["1","2","3","4","5"]  # 刻度值命名
x = [1,2,3,4,5]    # 横坐标
y3= [2,3,1,4,5]    # 纵坐标
y4= [4,6,8,5,9]    # 纵坐标
y5=[24,27,22,26,28]     # 纵坐标
f, (ax3, ax) = plt.subplots(2, 1, sharex=False)  # 绘制两个子图
plt.subplots_adjust(wspace=0,hspace=0.08) # 设置 子图间距
ax.plot(x, y3, color='red', marker='o', linestyle='solid',label=u'1')   # 绘制折线
ax.plot(x, y4, color='g', marker='o', linestyle='solid',label=u'2')  # 绘制折线
plt.xticks(x, names, rotation=45) # 刻度值
ax3.xaxis.set_major_locator(plt.NullLocator()) # 删除坐标轴的刻度显示
ax3.plot(x, y5, color='blue', marker='o', linestyle='solid',label=u'3')  # 绘制折线
ax3.plot(x, y3, color='red', marker='o', linestyle='solid',label=u'1') # 起图例作用
ax3.plot(x, y4, color='g', marker='o', linestyle='solid',label=u'2') # 起图例作用
ax3.set_ylim(21, 30) # 设置纵坐标范围
ax.set_ylim(0, 10)  # 设置纵坐标范围
ax3.grid(axis='both',linestyle='-.') # 打开网格线
ax.grid(axis='y',linestyle='-.')   # 打开网格线
ax3.legend() # 让图例生效
plt.xlabel(u"λ") #X轴标签
plt.ylabel("mAP") #Y轴标签
ax.spines['top'].set_visible(False)    # 边框控制
ax.spines['bottom'].set_visible(True) # 边框控制
ax.spines['right'].set_visible(False)  # 边框控制
ax3.spines['top'].set_visible(False)   # 边框控制
ax3.spines['bottom'].set_visible(False) # 边框控制
ax3.spines['right'].set_visible(False)  # 边框控制
ax.tick_params(labeltop='off')  
# 绘制断层线
d = 0.01  # 断层线的大小
kwargs = dict(transform=ax3.transAxes, color='k', clip_on=False)
ax3.plot((-d, +d), (-d, +d), **kwargs)        # top-left diagonal
kwargs.update(transform=ax.transAxes, color='k')  # switch to the bottom axes
ax.plot((-d, +d), (1 - d, 1 + d), **kwargs)  # bottom-left diagonal
plt.show()

结果如图所示:

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。如有错误或未考虑完全的地方,望不吝赐教。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python 作图实现坐标轴截断(打断)的效果

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录