我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Pytorch怎么实现LSTM时间序列预测

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Pytorch怎么实现LSTM时间序列预测

小编给大家分享一下Pytorch怎么实现LSTM时间序列预测,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!

开发环境说明:

Python 35

Pytorch 0.2

CPU/GPU均可

1、LSTM简介

人类在进行学习时,往往不总是零开始,学习物理你会有数学基础、学习英语你会有中文基础等等。

于是对于机器而言,神经网络的学习亦可不再从零开始,于是出现了Transfer Learning,就是把一个领域已训练好的网络用于初始化另一个领域的任务,例如会下棋的神经网络可以用于打德州扑克。

我们这讲的是另一种不从零开始学习的神经网络——循环神经网络(Recurrent Neural Network, RNN),它的每一次迭代都是基于上一次的学习结果,不断循环以得到对于整体序列的学习,区别于传统的MLP神经网络,这种神经网络模型存在环型结构,

具体下所示:

Pytorch怎么实现LSTM时间序列预测

上图是RNN的基本单元,通过不断循环迭代展开模型如下所示,图中ht是神经网络的在t时刻的输出,xt是t时刻的输入数据。

这种循环结构对时间序列数据能够很好地建模,例如语音识别、语言建模、机器翻译等领域。

Pytorch怎么实现LSTM时间序列预测

但是普通的RNN对于长期依赖问题效果比较差,当序列本身比较长时,由于神经网络模型的训练是采用backward进行,在梯度链式法则中容易出现梯度消失和梯度爆炸的问题,需要进一步改进RNN的模型结构。

针对Simple RNN存在的问题,LSTM网络模型被提出,LSTM的核心是修改了增添了Cell State,即加入了LSTM CELL,通过输入门、输出门、遗忘门把上一时刻的hidden state和cell state传给下一个状态。

如下所示:

Pytorch怎么实现LSTM时间序列预测

遗忘门:ft = sigma(Wf*[ht-1, xt] + bf)

输入门:it = sigma(Wi*[ht-1, xt] + bi)

cell state initial: C't = tanh(Wc*[ht-1, xt] +bc)

cell state: Ct = ft*Ct-1+ itC't

输出门:ot = sigma(Wo*[ht-1, xt] + bo)

模型输出:ht = ot*tanh(Ct)

LSTM有很多种变型结构,实际工程化过程中用的比较多的是peephole,就是计算每个门的时候增添了cell state的信息,有兴趣的童鞋可以专研专研。

上一部分简单地介绍了LSTM的模型结构,下边将具体介绍使用LSTM模型进行时间序列预测的具体过程。

2、数据准备

对于时间序列,本文选取正弦波序列,事先产生一定数量的序列数据,然后截取前部分作为训练数据训练LSTM模型,后部分作为真实值与模型预测结果进行比较。正弦波的产生过程如下:

SeriesGen(N)方法用于产生长度为N的正弦波数值序列;

trainDataGen(seq,k)用于产生训练或测试数据,返回数据结构为输入输出数据。seq为序列数据,k为LSTM模型循环的长度,使用1~k的数据预测2~k+1的数据。

Pytorch怎么实现LSTM时间序列预测

3、模型构建

Pytorch的nn模块提供了LSTM方法,具体接口使用说明可以参见Pytorch的接口使用说明书。此处调用nn.LSTM构建LSTM神经网络,模型另增加了线性变化的全连接层Linear(),但并未加入激活函数。由于是单个数值的预测,这里input_size和output_size都为1.

Pytorch怎么实现LSTM时间序列预测

4、训练和测试

(1)模型定义、损失函数定义

Pytorch怎么实现LSTM时间序列预测

(2)训练与测试

Pytorch怎么实现LSTM时间序列预测

(3)结果展示

比较模型预测序列结果与真实值之间的差距

Pytorch怎么实现LSTM时间序列预测

pytorch的优点

1.PyTorch是相当简洁且高效快速的框架;2.设计追求最少的封装;3.设计符合人类思维,它让用户尽可能地专注于实现自己的想法;4.与google的Tensorflow类似,FAIR的支持足以确保PyTorch获得持续的开发更新;5.PyTorch作者亲自维护的论坛 供用户交流和求教问题6.入门简单

看完了这篇文章,相信你对“Pytorch怎么实现LSTM时间序列预测”有了一定的了解,如果想了解更多相关知识,欢迎关注编程网行业资讯频道,感谢各位的阅读!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Pytorch怎么实现LSTM时间序列预测

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Pytorch怎么实现LSTM时间序列预测

小编给大家分享一下Pytorch怎么实现LSTM时间序列预测,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!开发环境说明:Python 35Pytorch 0.2CPU/GPU均可1、LSTM简介人类在进行学习时,往往不总是
2023-06-15

PyTorch+LSTM实现单变量时间序列预测

时间序列是指在一段时间内发生的任何可量化的度量或事件。这篇文章主要为大家介绍了PyTorch+LSTM实现单变量时间序列预测的相关资料,需要的可以参考一下
2023-02-22

Python怎么实现LSTM时间序列预测

本篇内容主要讲解“Python怎么实现LSTM时间序列预测”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Python怎么实现LSTM时间序列预测”吧!参考数据:数据一共两列,左边是日期,右边是乘
2023-06-02

怎么使用PyTorch和LSTM实现单变量时间序列预测

这篇“怎么使用PyTorch和LSTM实现单变量时间序列预测”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“怎么使用PyTor
2023-07-05

多维时序 | Matlab实现LSTM-Adaboost和LSTM多变量时间序列预测对比

多维时序 | Matlab实现LSTM-Adaboost和LSTM多变量时间序列预测对比 目录 多维时序 | Matlab实现LSTM-Adaboost和LSTM多变量时间序列预测对比预测效果基本介绍模型描述程序设计参考资料
2023-08-30

PyTorch怎么搭建ANN实现时间序列风速预测

这篇文章主要介绍了PyTorch怎么搭建ANN实现时间序列风速预测的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇PyTorch怎么搭建ANN实现时间序列风速预测文章都会有所收获,下面我们一起来看看吧。数据集数据
2023-06-30

Matlab怎么实现时间序列预测分类

这篇文章主要介绍“Matlab怎么实现时间序列预测分类”,在日常操作中,相信很多人在Matlab怎么实现时间序列预测分类问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Matlab怎么实现时间序列预测分类”的疑
2023-06-20

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录