我的编程空间,编程开发者的网络收藏夹
学习永远不晚

pytorch dataset实战案例之读取数据集的代码

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

pytorch dataset实战案例之读取数据集的代码

概述

最近在跑一篇图像修复论文的代码,配置好环境之后开始运行,发现数据一直加载不进去。
害,还是得看人家代码咋写的,一句一句看逻辑,准能找出问题。通读dataset后,发现了问题所在,终于成功加载了数据集。

项目结构与代码

项目结构

主要的目的就是从数据集中读取到彩色图像和掩码图像。
代码
代码中涉及到torch.transforms、合并路径等知识点,我在代码中都进行了详细的注释,路径要对照着项目结构,如果自己用的话要根据项目结构去将相对路径改过来。
dataset.py :当前的工作路径:…\OT-GAN-for-Inpainting-master\class="lazy" data-src\data

import os
import math
import numpy as np
from glob import glob

from random import shuffle
from PIL import Image, ImageFilter

import torch
import torchvision.transforms.functional as F
import torchvision.transforms as transforms
from torch.utils.data import Dataset, DataLoader



class InpaintingData(Dataset):
    def __init__(self, args):
        super(Dataset, self).__init__()     # 继承Dataset的父类的初始化函数
        self.w = self.h = args.image_size   # 通过args传入新的属性---图像的w和h
        self.mask_type = args.mask_type     # 通过args传入新的属性---mask_type

        # image and mask 
        self.image_path = []    #创建image_path的数组
        for ext in ['*.jpg', '*.png']:  # 获取每一个后缀为.jpg或者.png的图片,为ext
            # 将dir_image、data_train和ext拼接作为图片的路径,并将其存入到数组image_path之中,glob()获取一个lsit集合
            self.image_path.extend(glob(os.path.join(args.dir_image, args.data_train, ext)))
        self.mask_path = glob(os.path.join(args.dir_mask, args.mask_type, '*.png')) #拼接dir_mask、mask_type和路径下所有的.png作为mask_path

        # augmentation 
        self.img_trans = transforms.Compose([   #接收一个 transforms方法的list为参数,将这些操作组合到一起,返回一个新的tranforms
            transforms.RandomResizedCrop(args.image_size),  #随机随机长宽比裁剪,大小为image_size
            transforms.RandomHorizontalFlip(), #随机水平翻转
            transforms.ColorJitter(0.05, 0.05, 0.05, 0.05), #改变图像的亮度、对比度、饱和度和色调。
            transforms.ToTensor()])     # 转为tensor,并归一化至[0-1]
        self.mask_trans = transforms.Compose([
            transforms.Resize(args.image_size, interpolation=transforms.InterpolationMode.NEAREST), #将输入图像调整为给定的大小,interpolation是插值方式,此处是默认值NEAREST
            transforms.RandomHorizontalFlip(),  #随机水平翻转
            transforms.RandomRotation(  #随机旋转
                (0, 45), interpolation=transforms.InterpolationMode.NEAREST), #(0, 45)是角度
        ])

    def __len__(self):  # __len__和__getitem__DataSet类必须实现的静态方法
        return len(self.image_path)

    def __getitem__(self, index):
        # load image
        image = Image.open(self.image_path[index]).convert('RGB') #获取图像,并将其转化为RGB(3x8位像素)模式
        filename = os.path.basename(self.image_path[index]) #获取图片的路径

        if self.mask_type == 'pconv': #如果mask_type为pconv
            index = np.random.randint(0, len(self.mask_path)) #随机从mask_path中获取一个下标
            mask = Image.open(self.mask_path[index])    #根据下标获取mask图片
            mask = mask.convert('L')    #将mask图片转化为L(8位像素的黑白图片,0表示黑,255表示白)模式
        else:   # 构造mask,有mask数据集的话就运行不到这里
            mask = np.zeros((self.h, self.w)).astype(np.uint8) #构造与h和w一样大的图片,都用0填充,并将其转换为uint8
            mask[self.h // 4:self.h // 4 * 3, self.w // 4:self.w // 4 * 3] = 1
            mask = Image.fromarray(m).convert('L')

        # augment
        image = self.img_trans(image) * 2. - 1. # 数据标准化,将输出限定在一定的范围
        mask = F.to_tensor(self.mask_trans(mask))   # 将转化后的mask图像转化为tensor

        return image, mask, filename    #返回


if __name__ == '__main__':
    from attrdict import AttrDict

    args = {
        'dir_image': '../../examples/logos',
        'data_train': 'image',
        'dir_mask': '../../examples/logos/mask',
        'mask_type': 'pconv',
        'image_size': 512
    }
    args = AttrDict(args) # 将上面定义的参数传入AttrDict()作为新参数

    data = InpaintingData(args)     #创建InpaintingData对象
    print(len(data), len(data.mask_path))   #输出data的长度,mask的长度
    img, mask, filename = data[0]   # 获取第一张图片
    print(img.size(), mask.size(), filename)    #打印上述信息

输出:

再Debug一下看:
如下图所示,执行玩加载数据的代码之后,已经成功获取到数据

总结

这段代码可以作为读取数据集的一个DataSet类的基础类,可以扩充进行修改,以后有类似需要可以拿过来修改。

参考资料

[1] https://github.com/researchmm/AOT-GAN-for-Inpainting

到此这篇关于pytorch dataset实战----读取数据集的文章就介绍到这了,更多相关pytorch 读取数据集内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

pytorch dataset实战案例之读取数据集的代码

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

spark读取hbase的数据实例代码

这篇文章主要介绍“spark读取hbase的数据实例代码”,在日常操作中,相信很多人在spark读取hbase的数据实例代码问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”spark读取hbase的数据实例代码
2023-06-02

Spring Boot实战之数据库操作的示例代码

上篇文章中已经通过一个简单的HelloWorld程序讲解了Spring boot的基本原理和使用。本文主要讲解如何通过spring boot来访问数据库,本文会演示三种方式来访问数据库,第一种是JdbcTemplate,第二种是JPA,第三
2023-05-30

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录