我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python单因素分析线性拟合及地理编码源码分析

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python单因素分析线性拟合及地理编码源码分析

今天小编给大家分享一下python单因素分析线性拟合及地理编码源码分析的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。

一、单因素分析线性拟合

  • 功能:线性拟合,单因素分析,对散点图进行线性拟合,并放大散点图的局部位置

  • 输入:某个xlsx文件,包含'患者密度(人/10万人)'和'人口密度(人/平方千米)'两列

  • 输出:对这两列数据进行线性拟合,绘制散点

实现代码:

import pandas as pdfrom pylab import mplfrom scipy import optimizeimport numpy as npimport matplotlib.pyplot as pltdef f_1(x, A, B):    return A*x + Bdef draw_cure(file):    data1=pd.read_excel(file)    data1=pd.DataFrame(data1)    hz=list(data1['患者密度(人/10万人)'])    rk=list(data1['人口密度(人/平方千米)'])    hz_gy=[]    rk_gy=[]    for i in hz:        hz_gy.append((i-min(hz))/(max(hz)-min(hz)))    for i in rk:        rk_gy.append((i-min(rk))/(max(rk)-min(rk)))    n=['玄武区','秦淮区','建邺区','鼓楼区','浦口区','栖霞区','雨花台区','江宁区','六合区','溧水区','高淳区',       '锡山区','惠山区','滨湖区','梁溪区','新吴区','江阴市','宜兴市',       '鼓楼区','云龙区','贾汪区','泉山区','铜山区','丰县','沛县','睢宁县','新沂市','邳州市',       '天宁区','钟楼区','新北区','武进区','金坛区','溧阳市',       '虎丘区','吴中区','相城区','姑苏区','吴江区','常熟市','张家港市','昆山市','太仓市',       '崇川区','港闸区','通州区','如东县','启东市','如皋市','海门市','海安市',       '连云区','海州区','赣榆区','东海县','灌云县','灌南县',       '淮安区','淮阴区','清江浦区','洪泽区','涟水县','盱眙县','金湖县',       '亭湖区','盐都区','大丰区','响水县','滨海县','阜宁县','射阳县','建湖县','东台市',       '广陵区','邗江区','江都区','宝应县','仪征市','高邮市',       '京口区','润州区','丹徒区','丹阳市','扬中市','句容市',       '海陵区','高港区','姜堰区','兴化市','靖江市','泰兴市',       '宿城区','宿豫区','沭阳县','泗阳县','泗洪县']    mpl.rcParams['font.sans-serif'] = ['FangSong']    plt.figure(figsize=(16,8),dpi=98)    p1 = plt.subplot(121)    p2 = plt.subplot(122)    p1.scatter(rk_gy,hz_gy,c='r')    p2.scatter(rk_gy,hz_gy,c='r')    p1.axis([0.0,1.01,0.0,1.01])    p1.set_ylabel("患者密度(人/10万人)",fontsize=13)    p1.set_xlabel("人口密度(人/平方千米)",fontsize=13)    p1.set_title("人口密度—患者密度相关性",fontsize=13)    for i,txt in enumerate(n):        p1.annotate(txt,(rk_gy[i],hz_gy[i]))    A1, B1 = optimize.curve_fit(f_1, rk_gy, hz_gy)[0]    x1 = np.arange(0, 1, 0.01)    y1 = A1*x1 + B1    p1.plot(x1, y1, "blue",label='一次拟合直线')    x2 = np.arange(0, 1, 0.01)    y2 = x2    p1.plot(x2, y2,'g--',label='y=x')    p1.legend(loc='upper left',fontsize=13)    # # plot the box    tx0 = 0;tx1 = 0.1;ty0 = 0;ty1 = 0.2    sx = [tx0,tx1,tx1,tx0,tx0]    sy = [ty0,ty0,ty1,ty1,ty0]    p1.plot(sx,sy,"purple")    p2.axis([0,0.1,0,0.2])    p2.set_ylabel("患者密度(人/10万人)",fontsize=13)    p2.set_xlabel("人口密度(人/平方千米)",fontsize=13)    p2.set_title("人口密度—患者密度相关性",fontsize=13)    for i,txt in enumerate(n):        p2.annotate(txt,(rk_gy[i],hz_gy[i]))    p2.plot(x1, y1, "blue",label='一次拟合直线')    p2.plot(x2, y2,'g--',label='y=x')    p2.legend(loc='upper left',fontsize=13)    plt.show()if __name__ == '__main__':    draw_cure("F:\医学大数据课题\论文终稿修改\scientific report\返修\市区县相关分析 _2231.xls")

实现效果:

python单因素分析线性拟合及地理编码源码分析

二、实现地理编码

  • 输入:中文地址信息,例如安徽为县天城镇都督村冲里18号

  • 输出:经纬度坐标,例如107.34799754989581 30.50483335424108

  • 功能:根据中文地址信息获取经纬度坐标

实现代码:

import jsonfrom urllib.request import urlopen,quoteimport xlrddef readXLS(XLS_FILE,sheet0):    rb= xlrd.open_workbook(XLS_FILE)    rs= rb.sheets()[sheet0]    return rsdef getlnglat(adress):    url = 'http://api.map.baidu.com/geocoding/v3/?address='    output = 'json'    ak = 'fdi11GHN3GYVQdzVnUPuLSScYBVxYDFK'    add = quote(adress)#使用quote进行编码 为了防止中文乱码    # add=adress    url2 = url + add + '&output=' + output + '&ak=' + ak    req = urlopen(url2)    res = req.read().decode()    temp = json.loads(res)    return tempdef getlatlon(sd_rs):    nrows_sd_rs=sd_rs.nrows    for i in range(4,nrows_sd_rs):    # for i in range(4, 7):        row=sd_rs.row_values(i)        print(i,i/nrows_sd_rs)        b = (row[11]+row[12]+row[9]).replace('#','号') # 第三列的地址        print(b)        try:            lng = getlnglat(b)['result']['location']['lng']  # 获取经度并写入            lat = getlnglat(b)['result']['location']['lat']  #获取纬度并写入        except KeyError as e:            lng=''            lat=''            f_err=open('f_err.txt','a')            f_err.write(str(i)+'\t')            f_err.close()            print(e)        print(lng,lat)        f_latlon = open('f_latlon.txt', 'a')        f_latlon.write(row[0]+'\t'+b+'\t'+str(lng)+'\t'+str(lat)+'\n')        f_latlon.close()if __name__=='__main__':    # sle_xls_file = 'F:\医学大数据课题\江苏省SLE数据库(两次随访合并).xlsx'    sle_xls_file = "F:\医学大数据课题\数据副本\江苏省SLE数据库(两次随访合并) - 副本.xlsx"    sle_data_rs = readXLS(sle_xls_file, 1)    getlatlon(sle_data_rs)

结果展示:

python单因素分析线性拟合及地理编码源码分析

以上就是“python单因素分析线性拟合及地理编码源码分析”这篇文章的所有内容,感谢各位的阅读!相信大家阅读完这篇文章都有很大的收获,小编每天都会为大家更新不同的知识,如果还想学习更多的知识,请关注编程网行业资讯频道。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python单因素分析线性拟合及地理编码源码分析

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python单因素分析线性拟合及地理编码源码分析

今天小编给大家分享一下python单因素分析线性拟合及地理编码源码分析的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。一、单因
2023-07-02

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录