我的编程空间,编程开发者的网络收藏夹
学习永远不晚

C++ncnn模型验证精度实现代码

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

C++ncnn模型验证精度实现代码

验证ncnn模型的精度

1、进行pth模型的验证

得到ncnn模型的顺序为:.pth–>.onnx–>ncnn

.pth的精度验证如下:

如进行的是二分类:

    model = init_model(model, data_cfg, device=device, mode='eval')
    ###.pth转.onnx模型
    # #---
    # input_names = ["x"]
    # output_names = ["y"]
    # inp = torch.randn(1, 3, 256, 128) ##错误示例
    inp = np.full((1, 3, 160, 320), 0.5).astype(np.float) #(160,320) = (h,w)
    inp = torch.FloatTensor(inp)
    out = model(inp)
    print(out)

没有经过softmax层,out输出为±1的两个值。

2、转为onnx后的精度验证

   sess = onnxruntime.InferenceSession("G:\\pycharm_pytorch171\\pytorch_classification\\main\\sim.onnx", providers=["CUDAExecutionProvider"])  # use gpu
    input_name = sess.get_inputs()[0].name
    print("input_name: ", input_name)
    output_name = sess.get_outputs()[0].name
    print("output_name: ", output_name)
    # test_images = torch.rand([1, 3, 256, 128])
    test_images = np.full((1, 3, 160, 320), 0.5).astype(np.float) #(160,320) = (h,w)
    test_images = torch.FloatTensor(test_images)
    print("test_image", test_images)
    prediction = sess.run([output_name], {input_name: test_images.numpy()})
    print(prediction)

3、ncnn精度验证

首先保证mean、norm输出的值与onnx保持一致,因为onnx直接输入值0.5,ncnn模型经过mean、norm计算后的结果与0.5一致就行。

然后就是ncnn模型的计算输出

- 查看输出结果是否是0.5,首先得将输入值1给到img

 ```cpp
     constexpr int w = 320;
     constexpr int h = 160;
     float cbuf[h][w];
     cv::Mat img(h, w, CV_8UC3,(float *)cbuf);
     //BYTE* iPtr = new BYTE[128 * 256 * 3];
     BYTE* iPtr = new BYTE[h * w * 3];
     for (int i = 0; i < h; i++)
     {
         for (int j = 0; j < w; j++)
         {
             for (int k = 0; k < 3; k++)
             {
                 //iPtr[i * 256 * 3 + j * 3 + k] = img.at<cv::Vec3f>(i, j)[k];
                 img.at<cv::Vec3b>(i, j)[k] = 1;
             }
         }
     }
 ```
 - 经过上面的赋值,通过了mean、norm计算后,得到的结果进行查看,值为0.5则正确转换。得到的结果送入下面的代码进行输出。
 ncnn结果为mat,因此采用该方法进行遍历查看。
 ```cpp
 //输出ncnn mat
 void ncnn_mat_print(const ncnn::Mat& m)
 {
     for (int q = 0; q < m.c; q++)
     {
         const float* ptr = m.channel(q);
         for (int y = 0; y < m.h; y++)
         {
             for (int x = 0; x < m.w; x++)
             {
                 printf("%f ", ptr[x]);
             }
             ptr += m.w;
             printf("\n");
         }
         printf("------------------------\n");
     }
 }
 ```
 将mat给到模型进行推理得到结果。

4、结果确认

一般情况下,pth模型与onnx模型结果相差不大,ncnn会有点点损失,千分位上的损失,这样精度基本上是一致的。

若不一致,看哪一步结果相差太大,如果是ncnn这一步相差太大,检查是否是值输入有问题,或者是输入的(h,w)弄反了。

到此这篇关于C++ ncnn模型验证精度实现代码的文章就介绍到这了,更多相关C++ ncnn验证精度内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

C++ncnn模型验证精度实现代码

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

C++ncnn模型验证精度实现代码

这篇文章主要介绍了C++ncnn模型验证精度实现过程,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧
2023-02-24

C++ ncnn模型验证精度如何实现

本篇内容主要讲解“C++ ncnn模型验证精度如何实现”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“C++ ncnn模型验证精度如何实现”吧!验证ncnn模型的精度1、进行pth模型的验证得到n
2023-07-05

C++实现验证二叉搜索树代码

本篇内容主要讲解“C++实现验证二叉搜索树代码”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“C++实现验证二叉搜索树代码”吧!验证二叉搜索树Given a binary tree, determ
2023-06-20

C#实现身份证验证功能的示例代码

这篇文章主要为大家详细介绍了如何利用C#实现身份证验证功能,文中的示例代码讲解详细,对我们学习C#有一定的帮助,感兴趣的小伙伴可以跟随小编一起了解一下
2022-12-20

C++ 函数继承详解:如何使用模板继承来实现泛型代码复用?

c++++ 函数继承通过模板继承实现泛型代码复用,允许创建通用函数模板,然后继承更具体的函数,定制不同的数据类型行为。代码示例包括打印容器函数,通过继承定制打印整数和字符串容器。函数继承增强代码复用、可读性、可维护性,以及通过继承类轻松扩展
C++ 函数继承详解:如何使用模板继承来实现泛型代码复用?
2024-05-04

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录