我的编程空间,编程开发者的网络收藏夹
学习永远不晚

自学tensorflow——2.使用te

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

自学tensorflow——2.使用te

废话不多说,直接开始

1.首先,导入所需的模块:

import numpy as np
import os
import tensorflow as tf

关闭tensorflow输出的一大堆硬件信息

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

2.写一个函数generate_data(),用来生成我们所需要的数据,这里使用的线性函数是y = 0.1*x + 0.3,具体解释见注释

def generate_data():#随机生成测试数据
    num_points = 1000
    vector_set = []
    for i in range(num_points):
        x1 = np.random.normal(0.0, 0.55)
        y1 = x1 * 0.1 + 0.3 + np.random.normal(0.0, 0.03)#以函数y = 0.1x+0.3为基准生成点数据,加上一个随机值是为了防止生成的点都严格在一条直线上
        vector_set.append([x1, y1])
        x_data = [v[0] for v in vector_set]#就是vector_set里面的所有x1组成的列表
        y_data = [v[1] for v in vector_set]#同上
    return x_data, y_data

说一下上面8,9两行的操作,其实

x_data = [v[0] for v in vector_set]

for i in vector_set:
    x_data.append(i[0])

等价,只是这样写比较方便。

3.接下来就是我们的计算图的构建了

首先介绍一些东西:

tf.random_uniform(shape, a, b)#用来生成a~b范围内的均匀分布的随机数,其中shape是生成的张量的形状
tf.square(a)#计算a的平方
tf.reduce_mean()#(不指定axis的情况下)就是计算平均值
tf.train.GradientDescentOptimizer(0.5)#tf.train里面有许多优化方法,这里使用GradientDescentOptimizer()参数是学习率,范围0~1

博主也只是略知一二,具体可以去查手册或百度

代码如下,也是有注释的(注意,下面的*,+,-都是张量运算)

def train(x_data, y_data):
    w = tf.Variable(tf.random_uniform([1], -1.0, 1.0), name = 'w')#生成均匀分布的值,其中[1]可以换成(1, ),表示矩阵的形状
    b = tf.Variable(tf.zeros([1]), name = 'b')#b初始化为0
    y = w * x_data + b#根据随机生成的w, x_data, b计算y
    loss = tf.reduce_mean(tf.square(y - y_data), name = 'loss')#tf.square()平方,tf.reduce_mean(不指定axis的情况下)就是计算平均值,所以loss就是标准差
    optimizer = tf.train.GradientDescentOptimizer(0.5)#设置学习率为0.5
    train = optimizer.minimize(loss, name = 'train')#使用优化器通过损失函数调整神经网络权值

    with tf.Session() as sess:#开启任务,为了方便,起了别名sess
      init = tf.global_variables_initializer()#同上
      sess.run(init)#初始化全部变量

      print('w = ', sess.run(w), 'b = ', sess.run(b), 'loss = ', sess.run(loss))#这是随机生成的,开始训练前的w,b和损失
      for step in range(50):#一共训练50次
          sess.run(train)
          print('w = ', sess.run(w), 'b = ', sess.run(b), 'loss = ', sess.run(loss))#这是每一次训练后的w,b和损失

最后只要调用这两个函数就行了

if __name__ == "__main__":
    x_data, y_data = generate_data()
    train(x_data, y_data)

对了,二次方程,甚至多次方程也可以哦

那么今天就到这里。

See you next time!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

自学tensorflow——2.使用te

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

自学tensorflow——2.使用te

废话不多说,直接开始1.首先,导入所需的模块:import numpy as npimport osimport tensorflow as tf关闭tensorflow输出的一大堆硬件信息os.environ['TF_CPP_MIN_LO
2023-01-31

python深度学习tensorflow怎么使用

本篇内容主要讲解“python深度学习tensorflow怎么使用”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“python深度学习tensorflow怎么使用”吧!1、编辑器编写tensorf
2023-07-02

深度学习TensorFlow框架怎么使用

使用TensorFlow框架进行深度学习可以分为以下几个步骤:1. 安装TensorFlow:首先,您需要在您的计算机上安装TensorFlow。可以通过pip命令在命令行中安装TensorFlow。例如,在Windows上,可以执行以下命
2023-09-21

Python2.7自学笔记1——使用py

1、number    数字可以直接在python运算,使用圆括号分组In [1]: 2+2Out[1]: 4In [2]: 50-5*6Out[2]: 20In [3]: (50-5.0*6)/4Out[3]: 5.0In [4]: 8/
2023-01-31

Android自定义组件:2、如何实现和使用自定义组件、自定义属性

声明:本教程不收取任何费用,欢迎转载,尊重作者劳动成果,不得用于商业用途,侵权必究!!! 目录 一、前言 二、如何实现自定义组件 步骤1:写 attrs.xml 资源文件 1、attrs.xml 文件 和 R 文件对应关系 2、attrs.
2022-06-06

Android AIDL使用介绍(2)自定义数据类型的传递

1.背景 默认情况下,AIDL只支持下列数据类型: Java八种基础数据类型(如 int、long、char、boolean 等); String字符串; CharSequence字符序列; List列表,List中的所有元素须是前面提到的
2022-06-06

学习MVC -第2部分:使用LINQ to SQL创建MVC应用程序和执行CRUD操作

下载PDF_Article.zip - 5.4 MB下载SqlScriptToCreateTable.zip - 659 B下载SqlScriptToCreateDatabase.zip - 1,000 B下载LearningMVC.zip - 2.3 MB介
学习MVC -第2部分:使用LINQ to SQL创建MVC应用程序和执行CRUD操作
2015-09-15

Android开发自学笔记(五):使用代码控制界面

酷酷的外表已经具备了,那就开始让我们真正把它的功能给实现起来吧,外强中干,花拳绣腿可不行哦,我们需要真正的本领,需要一颗自强不息的心哦,常常想想自己的梦想什么,这样才不会迷失自己,才会在茫茫的世界中找到自己前进的方向!我不会告诉你我刚看过《
2022-06-06

python入门学习之自带help功能初步使用示例

这篇文章主要为大家介绍了python入门学习自带help功能初步使用示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-03-24

Android 使用Vitamio打造自己的万能播放器(2)—— 手势控制亮度、音量、缩放

前言本章继续完善播放相关播放器的核心功能,为后续扩展打好基础。系列1、Android 使用Vitamio打造自己的万能播放器(1)——准备 正文 一、实现目标 1.1 亮度控制 模仿VPlayer界面: 1.
2022-06-06

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录