我的编程空间,编程开发者的网络收藏夹
学习永远不晚

源码解析python的内存回收机制

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

源码解析python的内存回收机制

一:建立对象引用计数

1. 相关代码

void
_Py_NewReference(PyObject *op)
{
    if (_Py_tracemalloc_config.tracing) {
        _PyTraceMalloc_NewReference(op);
    }
#ifdef Py_REF_DEBUG
    _Py_RefTotal++;
#endif
    Py_SET_REFCNT(op, 1);
#ifdef Py_TRACE_REFS
    _Py_AddToAllObjects(op, 1);
#endif
}

2. 代码解释

_Py_NewReference这个函数的主要目的是为新创建的Python对象建立引用计数。在CPython中,引用计数是用来管理内存的一种方法,当一个Python对象的引用计数变为零时,表示没有其他对象引用该对象,因此可以安全地将其内存回收。

下面是_Py_NewReference函数的各个部分的简要说明:

  1. _Py_tracemalloc_config.tracing:当内存追踪功能启用时(即_Py_tracemalloc_config.tracing为真),调用_PyTraceMalloc_NewReference(op)以记录新引用的内存分配。
  2. #ifdef Py_REF_DEBUG:如果启用了引用计数调试(即编译时定义了Py_REF_DEBUG),则增加全局引用计数_Py_RefTotal。
  3. Py_SET_REFCNT(op, 1):将新对象op的引用计数设置为1。
  4. #ifdef Py_TRACE_REFS:如果启用了引用跟踪功能(即编译时定义了Py_TRACE_REFS),则调用_Py_AddToAllObjects(op, 1)将新对象op添加到所有对象列表中以进行跟踪。

这个函数通常在创建新的Python对象时调用,以便正确初始化引用计数。需要注意的是,这个函数是CPython内部使用的,不应该在普通Python代码或扩展模块中直接使用。

#ifdef Py_REF_DEBUG是一个C预处理器指令,它会检查是否在编译时定义了Py_REF_DEBUG宏。如果定义了这个宏,那么在#ifdef#endif之间的代码块将被编译并包含在最终的程序中。否则,这部分代码将被忽略。

Py_REF_DEBUG宏用于启用引用计数调试功能。这个功能允许CPython开发者和扩展模块开发者在开发过程中更轻松地追踪和诊断潜在的引用计数错误。这对于调试内存泄漏或提前释放对象等问题非常有用。

当启用Py_REF_DEBUG时,_Py_RefTotal变量被用来跟踪当前分配给Python对象的总引用计数。这个全局计数器在每次创建新引用(如在_Py_NewReference函数中)时递增,在释放引用时递减。通过检查_Py_RefTotal的值,开发者可以在某些情况下发现可能的内存泄漏或错误的引用计数操作。

需要注意的是,Py_REF_DEBUG功能会带来一定的性能开销,因此在生产环境中通常不启用。在发布构建中,默认情况下不会定义Py_REF_DEBUG宏。在开发和调试阶段,可以通过配置构建选项来启用这个功能。

二: 引用计数增加

1. 相关源码

// 引用计数增加
void
Py_IncRef(PyObject *o)
{
    Py_XINCREF(o);
}

// 宏定义
#define Py_XINCREF(op) _Py_XINCREF(_PyObject_CAST(op))

// 内联函数
static inline void _Py_XINCREF(PyObject *op)
{
    if (op != NULL) {
        Py_INCREF(op);
    }
}

// 宏定义
#define Py_INCREF(op) _Py_INCREF(_PyObject_CAST(op))

static inline void _Py_INCREF(PyObject *op)
{
#ifdef Py_REF_DEBUG
    _Py_RefTotal++;
#endif
    op->ob_refcnt++;  // 对象的引用计数加1
}

2. 源码解释

_Py_INCREF函数是一个静态内联函数,用于增加给定Python对象(op)的引用计数。内联函数允许编译器在调用处内联展开函数体,以减少函数调用的开销。以下是_Py_INCREF函数的各个部分的简要说明:

#ifdef Py_REF_DEBUG:如果启用了引用计数调试(即编译时定义了Py_REF_DEBUG),则增加全局引用计数_Py_RefTotalop->ob_refcnt++:增加给定Python对象op的引用计数(ob_refcnt字段)。

Py_INCREF是一个宏,用于调用_Py_INCREF函数。在调用_Py_INCREF之前,它首先使用_PyObject_CAST宏将给定的对象(op)转换为PyObject指针。这是为了确保_Py_INCREF函数接收到的参数具有正确的类型。在编写Python C扩展时,通常会使用Py_INCREF宏来增加Python对象的引用计数。

三:引用计数减少

1. 相关源码

void
Py_DecRef(PyObject *o)
{
    Py_XDECREF(o);
}

#define Py_XDECREF(op) _Py_XDECREF(_PyObject_CAST(op))

static inline void _Py_XDECREF(PyObject *op)
{
    if (op != NULL) {
        Py_DECREF(op);
    }
}

define Py_DECREF(op) _Py_DECREF(_PyObject_CAST(op))

static inline void _Py_DECREF(
#ifdef Py_REF_DEBUG
    const char *filename, int lineno,
#endif
    PyObject *op)
{
#ifdef Py_REF_DEBUG
    _Py_RefTotal--;
#endif
    if (--op->ob_refcnt != 0) {
#ifdef Py_REF_DEBUG
        if (op->ob_refcnt < 0) {
            _Py_NegativeRefcount(filename, lineno, op);
        }
#endif
    }
    else {
        _Py_Dealloc(op);
    }
}

// 引用计数等于0了,就调用dealloc函数进行对象删除
void
_Py_Dealloc(PyObject *op)
{
    destructor dealloc = Py_TYPE(op)->tp_dealloc;
#ifdef Py_TRACE_REFS
    _Py_ForgetReference(op);
#endif
    (*dealloc)(op);
}

2. 源码解释

在这段代码中,我们可以看到Py_DecRefPy_XDECREF_Py_XDECREFPy_DECREF_Py_DECREF这几个用于处理Python对象引用计数的函数和宏。

  1. Py_DecRef:这是一个简单的封装函数,接受一个指向PyObject的指针o作为参数,然后调用Py_XDECREF(o)宏。
  2. Py_XDECREF:这是一个宏,用于调用_Py_XDECREF函数。在调用之前,它使用_PyObject_CAST(op)宏将给定的对象(op)转换为PyObject指针。
  3. _Py_XDECREF:这是一个静态内联函数,用于在给定对象不为NULL时调用Py_DECREF宏。这意味着如果对象指针为空(即op == NULL),则不会对引用计数进行任何操作。
  4. Py_DECREF:这是一个宏,用于调用_Py_DECREF函数。在调用之前,它使用_PyObject_CAST(op)宏将给定的对象(op)转换为PyObject指针。
  5. _Py_DECREF:这是一个静态内联函数,用于减少给定Python对象(op)的引用计数。以下是_Py_DECREF函数的各个部分的简要说明:

a. #ifdef Py_REF_DEBUG:如果启用了引用计数调试(即编译时定义了Py_REF_DEBUG),则减少全局引用计数_Py_RefTotal

b. 减少对象的引用计数:使用--op->ob_refcnt来减少给定对象op的引用计数。

c. 判断引用计数是否为0:如果引用计数不为0,表示仍有其他对象引用该对象。如果引用计数为0,则调用_Py_Dealloc(op)来释放对象的内存。在引用计数调试模式下,还会检查引用计数是否为负数,如果是,则调用_Py_NegativeRefcount(filename, lineno, op)报告错误。

在Python C扩展中,通常使用Py_DECREFPy_XDECREF宏来减少Python对象的引用计数。这些宏提供了安全和高效的方式来处理引用计数,以防止内存泄漏和提前释放对象。

四:对象删除

1. 相关源码

void
_Py_Dealloc(PyObject *op)
{
    destructor dealloc = Py_TYPE(op)->tp_dealloc;
#ifdef Py_TRACE_REFS
    _Py_ForgetReference(op);
#endif
    (*dealloc)(op);
}

2. 源码解释

_Py_Dealloc函数是CPython中用于释放Python对象内存的函数。它在对象的引用计数变为零时调用,表示没有其他对象引用该对象,可以安全地回收其内存。以下是_Py_Dealloc函数的各个部分的简要说明:

destructor dealloc = Py_TYPE(op)->tp_dealloc;:从给定Python对象op的类型对象中获取析构函数(tp_dealloc),并将其赋值给dealloc。每个类型对象都有一个与之关联的析构函数,该函数负责清理该类型的对象所占用的内存。#ifdef Py_TRACE_REFS:如果启用了引用跟踪功能(即编译时定义了Py_TRACE_REFS),则调用_Py_ForgetReference(op)将对象op从所有对象列表中删除,以便不再跟踪该对象。(*dealloc)(op);:调用dealloc指向的析构函数,释放对象op所占用的内存。这里使用了函数指针,这意味着dealloc可以指向任何类型的析构函数,从而可以灵活地处理不同类型的Python对象。

需要注意的是,_Py_Dealloc函数是CPython内部使用的,不应该在普通Python代码或扩展模块中直接使用。在Python扩展模块中,您应该使用相应的宏和API函数来管理引用计数,例如Py_DECREFPy_XDECREF

Py_TYPE(op)是一个宏,用于获取给定Python对象(op)的类型。它返回一个指向PyTypeObject结构的指针,这个结构包含了对象类型的相关信息,如类型名、方法、属性、析构函数等。

在CPython内部实现中,每个Python对象都包含一个指向其类型对象的指针。这个指针位于PyObject结构的ob_type字段中。Py_TYPE(op)宏实际上就是访问这个ob_type字段,即op->ob_type

在Python C扩展和嵌入式代码中,Py_TYPE(op)宏可以用于检查对象的类型、获取类型特定的函数或执行类型相关的操作。例如,可以通过比较两个对象的类型对象来判断它们是否属于相同的类型。

到此这篇关于源码解析python的内存回收机制的文章就介绍到这了,更多相关python的内存回收机制解析内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

源码解析python的内存回收机制

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

源码解析python的内存回收机制

在CPython中,引用计数是用来管理内存的一种方法,当一个Python对象的引用计数变为零时,表示没有其他对象引用该对象,因此可以安全地将其内存回收,需要的朋友可以参考下
2023-05-17

Python的内存管理和垃圾回收机制

本篇内容介绍了“Python的内存管理和垃圾回收机制”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!对象的内存使用赋值语句是语言最常见的功能了
2023-06-02

python内存回收机制有什么优点

Python的内存回收机制有以下几个优点:自动化:Python的内存回收机制是自动的,程序员无需手动管理内存。Python会在对象不再被引用时自动回收内存,从而避免了内存泄漏和悬空指针等问题。垃圾回收:Python使用了垃圾回收机制,通过引
2023-10-20

php内存管理机制与垃圾回收机制的示例分析

这篇文章给大家分享的是有关php内存管理机制与垃圾回收机制的示例分析的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。一、内存管理机制先看一段代码:
2023-06-15

redis 过期策略及内存回收机制的示例分析

这篇文章主要介绍了redis 过期策略及内存回收机制的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。redis作为缓存的场景下,内存淘汰策略决定的redis的内存使用
2023-06-25

SpringBoot的SPI机制源码解析

这篇文章主要为大家介绍了SpringBoot的SPI机制源码解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2022-12-21

Python内存管理方式和垃圾回收算法解析

概要 在列表,元组,实例,类,字典和函数中存在循环引用问题。有 __del__ 方法的实例会以健全的方式被处理。给新类型添加GC支持是很容易的。支持GC的Python与常规的Python是二进制兼容的。 分代式回收能运行工作(目前是三个分代
2022-06-04

zookeeper的Leader选举机制源码解析

这篇文章主要为大家介绍了zookeeper的Leader选举源码解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-05-14

源码解析springbatch的job运行机制

这篇文章主要介绍了springbatch的job是如何运行的,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
2022-11-13

详解python的内存分配机制

开始 作为一个实例,让我们创建四个变量并为其赋值:variable1 = 1 variable2 = "abc" variable3 = (1,2) variable4 = ['a',1]#打印他们的ids print('Variable1
2022-06-02

JavaScript面试必备之垃圾回收机制和内存泄漏详解

垃圾回收机制和内存泄漏是JavaScript面试时常常问到的问题,这篇文章就为大家详细整理了他们的相关知识,感兴趣的小伙伴可以跟随小编一起了解一下
2023-05-19

Python底层技术解析:如何实现垃圾回收机制

Python底层技术解析:如何实现垃圾回收机制,需要具体代码示例引言:Python作为一种高级编程语言在开发中极为方便和灵活,但是其底层实现却是相当复杂的。本文将重点探讨Python的垃圾回收机制,包括垃圾回收的原理、算法以及具体的实现代码
Python底层技术解析:如何实现垃圾回收机制
2023-11-08

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录