我的编程空间,编程开发者的网络收藏夹
学习永远不晚

R语言使用gganimate创建可视化动图

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

R语言使用gganimate创建可视化动图

前言

介绍一个主要用于绘制动画的ggplot2的扩展包---gganimate包。

Hans Rosling的关于“New Insights on Poverty”的TED演讲绝对是对我影响最大的几个TED之一,原来数据可以这样展示,,,可视化可以这样炫,,,故事可以这样讲...

下面尝试使用 gganimate 包和 gapminder 数据集,实现类似可视化过程。

加载R包,数据

#R包安装
install.packages("devtools")
library(devtools)    
install_github("thomasp85/gganimate")
install.packages("gapminder")
#加载
library(gganimate)
library(gapminder)
#查看数据
head(gapminder)
# A tibble: 6 x 6
  country     continent  year lifeExp      pop gdpPercap
  <fct>       <fct>     <int>   <dbl>    <int>     <dbl>
1 Afghanistan Asia       1952    28.8  8425333      779.
2 Afghanistan Asia       1957    30.3  9240934      821.
3 Afghanistan Asia       1962    32.0 10267083      853.
4 Afghanistan Asia       1967    34.0 11537966      836.
5 Afghanistan Asia       1972    36.1 13079460      740.
6 Afghanistan Asia       1977    38.4 14880372      786.

数据集包括全球主要国家在1952-2007年的人均GDP增长、预期寿命以及人口增长的数据 。

ggplot2绘制

使用ggplot2绘制

theme_set(theme_bw())
p <- ggplot(gapminder,
  aes(x = gdpPercap, y=lifeExp, size = pop, colour = country)) +
  geom_point(show.legend = FALSE, alpha = 0.7) +
  scale_color_viridis_d() +
  scale_size(range = c(2, 12)) +
  scale_x_log10() +
  labs(x = "GDP per capita", y = "Life expectancy")
p

gganimate 动态

1. transition_time() 核心函数,添加动态

p + transition_time(year) +
  labs(title = "Year: {frame_time}")

2 按需设置

1)添加小尾巴

p + transition_time(year) +
  labs(title = "Year: {frame_time}") +
  shadow_wake(wake_length = 0.1, alpha = FALSE)

2)原数据做背景

p + transition_time(year) +
  labs(title = "Year: {frame_time}") +
  shadow_mark(alpha = 0.3, size = 0.5)

参考资料

https://www.datanovia.com/en/blog/gganimate-how-to-create-plots-with-beautiful-animation-in-r/

https://www.ted.com/talks/hans_rosling_the_best_stats_you_ve_ever_seen

以上就是R语言使用gganimate创建可视化动图的详细内容,更多关于gganimate可视化动图的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

R语言使用gganimate创建可视化动图

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

R语言怎么使用gganimate创建可视化动图

这篇“R语言怎么使用gganimate创建可视化动图”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“R语言怎么使用gganim
2023-06-30

如何使用R语言实现数据可视化绘图bar chart条形图

这篇文章主要为大家展示了“如何使用R语言实现数据可视化绘图bar chart条形图”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“如何使用R语言实现数据可视化绘图bar chart条形图”这篇文章
2023-06-29

使用R语言怎么创建一个箱线图

今天就跟大家聊聊有关使用R语言怎么创建一个箱线图,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。R语言中使用boxplot()函数来创建箱线图。语法在R语言中创建箱线图的基本语法是 -
2023-06-14

R语言可视化ggplot2怎么绘制24小时动态血糖图

这篇文章主要介绍“R语言可视化ggplot2怎么绘制24小时动态血糖图”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“R语言可视化ggplot2怎么绘制24小时动态血糖图”文章能帮助大家解决问题。数据
2023-06-30

R语言如何使用函数barplot()创建条形图

这篇文章将为大家详细讲解有关R语言如何使用函数barplot()创建条形图,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。条形图表示矩形条中的数据,条的长度与变量的值成比例。 R语言使用函数 barplot
2023-06-14

R语言数据可视化包ggplot2散点图怎么画

这篇文章主要介绍“R语言数据可视化包ggplot2散点图怎么画”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“R语言数据可视化包ggplot2散点图怎么画”文章能帮助大家解决问题。前言在ggplot2
2023-07-04

R语言数据可视化包ggplot2画图之散点图的基本画法

散点图主要用于描述两个连续变量之间的关系,通过散点图发现变量之间的相关性强度、是否存在线性关系等,下面这篇文章主要给大家介绍了关于R语言数据可视化包ggplot2画图之散点图的基本画法,需要的朋友可以参考下
2022-11-13

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录