我的编程空间,编程开发者的网络收藏夹
学习永远不晚

PHP怎么使用动态规划实现最优红包组合

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

PHP怎么使用动态规划实现最优红包组合

这篇文章主要介绍“PHP怎么使用动态规划实现最优红包组合”,在日常操作中,相信很多人在PHP怎么使用动态规划实现最优红包组合问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”PHP怎么使用动态规划实现最优红包组合”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

动态规划是什么

动态规划 (Dynamic programming 简写:DP)是一种在数学、管理科学、计算机科学、经济学和生物信息学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。

动态规划常常适用于有重叠子问题和最优子结构性质的问题,动态规划方法所耗时间往往远少于朴素解法。

动态规划适用场景

一般使用动态规划来解决求最优解的问题。在解决问题的过程中需要多次决策,而每次决策都有产生一组状态,然后从最优的决策中继续下一次的决策,最终找到最优的结果。

另外动态规划还具有3个特征,如下:

最优子结构性质

如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结构性质(即满足最优化原理)。从而我们可以通过子问题的最优解,推导出问题的最优解,也可以理解为后面阶段的状态可以通过前面阶段的状态推导出来。

无后效性

即子问题的解一旦确定,就不再改变,不受在这之后、包含它的更大的问题的求解决策影响。

可以简单理解为 在推导后面阶段状态的时候,我们只需要关心它前一阶段的状态状态,不用去关心这个状态是怎么一步步推导出来的。第二个含义就是某个阶段的状态一旦确定下来,就不会受之后阶段的决策影响。

子问题重叠性质

子问题重叠性质是指在用递归算法自顶向下对问题进行求解时,每次产生的子问题并不总是新问题,有些子问题会被重复计算多次

0-1背包问题

上面的理论比较抽象,和扯犊子一样的,来看下经典的背包问题。

假设现在有5个物品他们的重量分别是 2, 2, 5, 11, 4, 现在有一个背包,能承受的最大重量是 10,请选择合适的物品放入背包,那么能组合出的物品最大重量是多少?

不同的物品组合会有多种不同的状态,我们可以使用 f(i, w) 来表示一种状态,其中 i = index 表示第几个物品, w = weight 表示当前的总重量。

整个问题的求解需要经过 『n』 个阶段,每个阶段都需要决策一个物品是否放入背包,决策的结果只有2种 『放入』 或者 『不放入』。在决策完一个物品后,背包中的物品重量会有很多种不同的状态,我们需要把每一层的 重复状态 合并,然后只留下不同的状态。然后基于上一层的状态结果来推导出下一层的状态结果。最终全部物品决策完就可以找到最优的组合解。

第0(其实也就是第一个物品,按照习惯从0开始下标吧)个物品的重量是2,然后开始决策是否放入背包,结果只有2种。如果放入背包那么此时背包的重量就是2,如果不放入背包那么背包的重量就是0.记作 $status[0][0] = true; 和 $status[0][2] = true; 和上面的 f(i, w) 一样,前一位表示物品,后一位表示重量。

第1个物品的重量还是2,然后开始对他决策,决策只有2种选择 放入背包 或者 不放入背包,但是它的状态组合却多了,因为它要基于之前的背包状态来判断当前的状态。对第1个物品完成决策后会有3个状态(其实是4个状态,不过有1个重复的就不算了 还是算3个不同的状态)。

如果决策当前物品放入背包,第0个物品不放入背包,此时的状态是 $status[1][2 + 0] = true; => $status[1][2] = true;
如果决策当前物品放入背包,第0个物品也放入背包,此时的状态是 $status[1][2 + 2] = true; => $status[1][4] = true;

如果决策当前物品不放入背包,第0个物品不放入背包,此时的状态是 $status[1][0 + 0] = true; => $status[1][0] = true;
如果决策当前物品不放入背包,而第0个物品放入背包,此时的状态是 $status[1][0 + 2] = true; => $status[1][2] = true;

其中 $status[1][2] 是重复的,所有会产生3种结果。

PHP怎么使用动态规划实现最优红包组合

后面的物品也是以此类推,直到对所有的物品都决策完,整个状态的数组就都找出来了,然后只需要在最后一层找到一个值为true的最接近最大值(上面的例子中是10)的值就是背包能承受的最大值。然后可以从最后依次往前推就可以找出对应的物品下标,也就是哪些物品的组合是这个最优解组合了。

推导过程如下图:

PHP怎么使用动态规划实现最优红包组合
PHP怎么使用动态规划实现最优红包组合
PHP怎么使用动态规划实现最优红包组合

实际上在上面的推导过程中就是动态规划的解题思路。把问题分解为多个阶段,每个阶段对应一种策略。然后记录下每个阶段的状态(注意要去掉重复项),然后通过当前状态的可能推导出下一个阶段的所有状态可能,动态的推导下去。

PHP实现伪代码:

function dynamicKnapsack($arr, $n, $max){    // 初始化二维数组    $status = [];    for ($i = 0; $i < $n; $i++) {        // max + 1 才能有max的值 因为下标从0开始的        for ($j = 0; $j < $max + 1; $j++) {            $status[$i][$j] = 0;        }    }    // 第一个物品特殊处理    // 对第一个物品决策不放入    $status[0][0] = 1;    // 对第一个物品决策放入    if ($arr[0] <= $max) {        $status[0][$arr[0]] = 1;    }    // 开始动态规划进行决策 -- 外层是物品    for ($i = 1; $i < $n; $i++) {        // 决策放入背包        for ($j = 0; $j < $max + 1; $j++) {            // 找到他上一层的组合,在上一层的基础上变更当前层的结果            if ($status[$i - 1][$j] == 1) {                $status[$i][$j + $arr[$i]] = 1;            }        }        // 决策不放入背包        for ($j = 0; $j < $max + 1; $j++) {            // 找到上一层的组合直接取上一层的值            if ($status[$i - 1][$j] == 1) {                // $status[$i][$j] = 1; 等价于下面                $status[$i][$j] = $status[$i - 1][$j];            }        }    }    // 寻找最优组合    $best = [];    $j = 0;    // 为了找到寻找最优解的开始位置    // 也就是当前能组合出的最大值是多少    // 最后一行是最大的组合,它包含了所有都放入的结果    // 最终确定了j开始的位置    for ($j = $max; $j >= 0; $j--) {        if ($status[$n - 1][$j] == true) {            break;        }    }    for ($i = $n - 1; $i >= 1; $i--) { // 外层遍历行        if ($j - $arr[$i] >= 0 && $status[$i - 1][$j - $arr[$i]] == 1) {            var_dump('buy this product: '.$arr[$i]);            $best[] = $i;            $j = $j - $arr[$i];        }    }    if ($j != 0) {        var_dump('buy first product:'.$arr[0]);        $best[] = 0;    }    return $best;}// 测试数据$arr = [    2, 2, 5, 11, 4,];$n = 5;$max = 10;$best = dynamicKnapsack($arr, $n, $max);var_dump($best);

如果求的结果是 11,得出的结果是 4, 5, 2 的组合,你可能会有疑问不是还有11这个结果么,刚好它一个就满足了不是么。我觉得这个应该是看实际的需求。比如我这次的需求是把红包按过期时间排序,快过期的优先使用,然后我在组装数据的时候按过期时间顺序强行把快过期的红包放到数组最后面拼成数组,那最后的4就是最接近快过期的红包了,我要优先消耗掉这个红包,如果使用了4那11就不能使用了,只能继续去前面找,就是这么回事!

总结

这段代码的时间复杂度是多少? 耗时最多的部分是中间的嵌套2层循环,所有时间复杂度是 O(n*max),其中 n 表示物品的个数,max表示最大的承重。

空间复杂度是一开始申请的数组空间 O(n*max+1) 加上计算结果的累加有可能出现 O(n*2*max) 的情况,空间消耗还是很高的。

总体来说这是一种空间换时间的思路。另外在中间决策的嵌套循环里如果使用j从小到大遍历的话会出现for循环重复计算的问题。

到此,关于“PHP怎么使用动态规划实现最优红包组合”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注编程网网站,小编会继续努力为大家带来更多实用的文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

PHP怎么使用动态规划实现最优红包组合

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

PHP怎么使用动态规划实现最优红包组合

这篇文章主要介绍“PHP怎么使用动态规划实现最优红包组合”,在日常操作中,相信很多人在PHP怎么使用动态规划实现最优红包组合问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”PHP怎么使用动态规划实现最优红包组合
2023-06-20

怎么使用C++动态规划计算最大子数组

本文小编为大家详细介绍“怎么使用C++动态规划计算最大子数组”,内容详细,步骤清晰,细节处理妥当,希望这篇“怎么使用C++动态规划计算最大子数组”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。例题题目:输入一个整形
2023-07-02

怎么使用C++动态规划算法实现矩阵链乘法

这篇文章主要介绍“怎么使用C++动态规划算法实现矩阵链乘法”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“怎么使用C++动态规划算法实现矩阵链乘法”文章能帮助大家解决问题。问题描述:给定n个矩阵的链<
2023-07-02

使用Ajax怎么实现一个动态加载组合框

这篇文章将为大家详细讲解有关使用Ajax怎么实现一个动态加载组合框,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。一 province.jsp<%@ page language="java"
2023-06-08

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录