怎么在R语言中嵌套list
这期内容当中小编将会给大家带来有关怎么在R语言中嵌套list,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。
第一步:
生成data set的函数已经给出了。20个数据就是run20次~因为是随机生成的,最后得到的每个data set都不相同。然后把这20个数据集都存在一个list里~
art2 <- function(){ x1 <- rnorm(20) y1 <- rnorm(20) x2 <- rnorm(20,mean=10) y2 <- rnorm(20) x3 <- runif(100,-20,30) y3 <- runif(100,20,40) clusterdata2 <- cbind(c(x1,x2,x3),c(y1,y2,y3)) cvec <- c(rep(1,20),rep(2,20),rep(3,100)) out <- list(data=clusterdata2,cvec=cvec) out}datasets<-list()for (i in 1:20){ datasets[[i]]<- art2()}
为什么我的datasets要包两层,是[[i]]? 其实这里就有list的嵌套了。看我在生成的函数里已经有一个list,里面包含两个元素,一个是$data:生成的原始数据;另一个是$cvec:原始数据对应的实际分类。所以我想要个大的list把这20个list都包含在内,就得来个嵌套~两个框框——[[i]]就是两层!(我刚刚突然想到[[[i]]]会不会是三层啊?。。我没试过也,因为每个循环都是新增一层list,不会直接增两层,不然有层为空就会报错,哎呦我表述好难,先继续往下吧~~
p.s. 如果想要提取第5次生成的结果,就datasets[[5]],当然这里面还包含两个元素:原始数据数据和实际分类。如果想提取里面的原始数据数据,就datasets[[5]]$data,想提取里面的实际分类,则是datasets[[5]]$cvec。想提取全部20次的结果:直接datasets。如果!想要提取20次结果里的原始数据,就没那么直接了。得用for循环从1~20来一个datasets[[i]]$dat逐一取出来。这个应该很好理解,因为小list里是包含两种元素,外面嵌套list的才是重复20次。
第二步:
然后就是对这个大的datasets运行K-means,K=2~10。这里有两个循环,一个是我首先要把datasets从1~20走一遍,然后里面每个data set我都要从K=2~10计算K-means的结果。for循环很好写,具体的框架大致就是这样:”???“ 的地方是需要思考滴
for (k in 2:10){ for (i in 1:20){ ???<- kmeans(datasets[[i]]$data,k,nstart=50) ??? }}
K-means的语句里同时包含了i和k,所以这个结果会是一个嵌套的list。照我这样写for循环,里面那层就是i=1~20,外面那层是k=2~10。所以是当k=2时,把20个data sets循环一遍,然后k=3,再循环……直到k=10。所以我们要先保存固定k时的i=1~20的run出来的结果,第一个"???" 就得包括i,并且跟k无关。而且因为kmeans的结果返回的个list,里面包含了各种元素:$cluster, $size,等等。所以这跟上面datasets的保存一样,得是[[i]],两层!
第一个"???"已经解决了,假设是ks[[i]], 保存了当k固定时循环i=1~20的结果。现在我们要循环k=2~10,等于在列表ks的外面再嵌套一个list,是关于k循环的,跟i已经没什么关系了。所以下一个"???" 就得是kmean[[k]]<-ks。
结果就是这样的~
kmean <- list()ks <- list()for (k in 2:10){ for (i in 1:20){ ks[[i]] <- kmeans(datasets[[i]]$data,k,nstart=50) kmean[[k]]<-ks }}
现在讲讲怎么提取里面的数值。kmean是一个三层的list。最外面那层是跟k有关的,中间那层是跟i有关,里面那层是K-means的output作为一个list。
所以kmean[[k]], k=2~10, 是当k=k时20次K-means的结果。
如果想取k=2,第5个data sets的K-means结果,就是kmean[[2]][[5]],如果想取k=4,第1个data sets的K-means得到的分类结果cluster:kmean[[4]][[1]]$cluster。
Done!这是我个人在实际操作过程中的一个总结,所以如果有什么问题欢迎一起来讨论~
Further studying——
在factorial experiment design里我们经常会考虑多个factors因子,每个因子考虑几个levels。算了我直接拿我的例子来讲好了。。。在我最近做的事情里,要生成像开头一样的分类数据generate random clusters。
因为是因子实验设计,所以我考虑了三个因子:(1) the number of clusters 每个data中有几个群组,像开头的例子就有3个,这里我定的level是2,3,5; (2) the number of points in each cluster每群组里有多少点 ,定的level是25,100,225; and (3) the degree of separation群组和群组之间相隔的远还是近,函数里面有个sepVal可以定义,我定的是0.01和0.021; 最后是重复2遍。把所有结果存到一个list里
感觉讲得不太清楚T T。。看代码吧!我想表达的意思就是无论考虑多少个因子,list会新增多少层,只要按照上面的方法一层层叠加就好了!重点是搞清楚每次层代表的含义,还有明白怎么样取出想要的值~
cluster<-c(2,3,5)point<-c(25,100,225)sepval<-c(0.01,0.21)repl<-2 #Eq=1:the number of points in each cluster is the same. t<-list()gen<-list()Eq1<-list()for (i in 1:3){ for (j in 1:3){ for (k in 1:2){ t[[k]] <- genRandomClust(numClust=cluster[i], sepVal=sepval[k], numNonNoisy=2, numNoisy=0, numOutlier=0, numReplicate=repl, fileName="Eq1", clustszind=1, clustSizeEq=point[j], outputDatFlag=F, outputLogFlag=F, outputEmpirical=F, outputInfo=F) gen[[j]]<-t Eq1[[i]]<-gen } }} #Eq1[[i]][[j]][[k]]#Eq1[[i]][[j]][[k]]$datList[[1]]:rep1#Eq1[[i]][[j]][[k]]$datList[[2]]:rep2
补充:如何从嵌套很多层的列表中直接取出所有数值
给定列表
s = [[[[[[1, 1]], [[9, 1]]], [[5, 1]]], [[[3, 1]], [[7, 1]]]], [[[[2, 1]], [[6, 1]]], [[[4, 1]], [[8, 1]]]]]s[0] 是 [[[[[1, 1]], [[9, 1]]], [[5, 1]]], [[[3, 1]], [[7, 1]]]]s[1] 是 [[[[2, 1]], [[6, 1]]], [[[4, 1]], [[8, 1]]]]
每一个外层列表都包含2个子列表不停往下嵌套,并且s[0] 比s[1] 多嵌套一层
解决方案
方法1
转字符串之后使用replace替换掉不需要的值,例如
b = str(s).replace('[', '').replace(']', '').replace(' ', '').split(',')for m,n in enumerate(b): if m%2 == 0: result.append(int(n))
这里根据需求删掉了每一个最里层列表的第二维的值
方法2
优美一点的解法是用递归去取值
def flat(nums): res = [] for i in nums: if isinstance(i, list): res.extend(flat(i)) else: res.append(i) return resresult = flat(s)
结果:
[1, 1, 9, 1, 5, 1, 3, 1, 7, 1, 2, 1, 6, 1, 4, 1, 8, 1]
去掉多余的1之后和下面的结果一致
结果:
result
Out[157]: [1, 9, 5, 3, 7, 2, 6, 4, 8]
上述就是小编为大家分享的怎么在R语言中嵌套list了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注编程网行业资讯频道。
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341