我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python共轭梯度法特征值迭代次数讨论

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python共轭梯度法特征值迭代次数讨论

共轭梯度法,特征值聚堆情况下迭代次数讨论

输入各种特征值聚堆与分散时的矩阵,并应用共轭梯度法,观察迭代次数与聚堆情况的关系。

因为对角矩阵的对角线元素为其特征值,则用对角矩阵讨论较为方便
代码


import numpy as np

def cg(x0, A, b):
 r0 = np.dot(A, x0) - b
 p0 = -r0
 rk = r0
 pk = p0
 xk = x0
 t = 0 #记录迭代次数
 while np.linalg.norm(rk) >= 1e-6:
  rr = np.dot(rk.T, rk)
  ak = rr / np.dot(np.dot(pk.T, A), pk)
  xk = xk + ak * pk
  rk = rk + ak * np.dot(A, pk)
  bk = np.dot(rk.T, rk) / rr
  pk = -rk + bk * pk
  t += 1
 return xk, t

#输入列表,生成以列表为对角元素的对角矩阵
def Diagonal_matrix(D):
 n = len(D)
 diag = np.zeros((n,n))
 for i in range(n):
  diag[i][i] = D[i]
 return diag
#矩阵对角线元素
D_1 = [1, 1, 1, 1, 1, 6, 7, 8, 9, 10]
D_2 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
D_3 = [0.8, 0.9, 1, 1.1, 1.2, 6, 7, 8, 9, 10]
D_4 = [1 - 2*1e-7, 1 - 1e-7, 1, 1 + 1e-7, 1 + 2*1e-7, 6, 7, 8, 9, 10]
D_5 = [1, 1, 1, 2, 2, 2, 3, 3, 3, 10]
#初始值
x0 = np.zeros((10,1))
b = np.ones((10,1))  
#生成对角矩阵
diag1 = Diagonal_matrix(D_1)
diag2 = Diagonal_matrix(D_2)
diag3 = Diagonal_matrix(D_3)
diag4 = Diagonal_matrix(D_4)
diag5 = Diagonal_matrix(D_5)
#共轭梯度法迭代
x_1, n_1 = cg(x0, diag1, b)
x_2, n_2 = cg(x0, diag2, b)
x_3, n_3 = cg(x0, diag3, b)
x_4, n_4 = cg(x0, diag4, b)
x_5, n_5 = cg(x0, diag5, b)
n = [n_1, n_2, n_3, n_4, n_5]
#输出
for i in range(5):
  print('矩阵',i + 1 ,'的迭代次数为: ', n[i])

矩阵1,前5个元素聚堆且都为相同元素

矩阵2,特征值分散

矩阵3,前5个特征值聚堆,但是最大差为0.4 ,而cg法精度为1e-6

矩阵4,前5个特征值聚堆,且相差最大小于1e-6

矩阵5,三聚堆
输出:

分析:

  • 聚堆特征值可看作一个特征值
  • 特征值差小于迭代精度时被看作聚堆
  • 例如矩阵5,前三个对角元素看作一个,4-6元素看作一个,7-9看作一个 一共4个元素,则需要迭代4次

以上就是python共轭梯度法特征值迭代次数讨论的详细内容,更多关于python共轭梯度法迭代的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python共轭梯度法特征值迭代次数讨论

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录