我的编程空间,编程开发者的网络收藏夹
学习永远不晚

java实现马踏棋盘算法(骑士周游问题)

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

java实现马踏棋盘算法(骑士周游问题)

骑士周游问题

在8x8的国际棋盘上,按照马走日的规则,验证是否能够走遍棋盘。

解题思路

1、创建棋盘 chessBoard,是一个二维数组。
2、将当前位置设置为已经访问,然后根据当前位置,计算马儿还能走哪些位置,并放入到一个集合中(ArrayList),最多有8个位置,每走一步,就使用step+1。
3、遍历ArrayList中存放的所有位置,看看哪个可以走通,如果走通,就继续,走不通,就回溯。
4、判断马儿是否完成了任务,使用step和应该走的步数比较,如果没有达到数量,则表示没有完成任务,将整个棋盘置0。
5、注意:马儿不同的走法(策略),会得到不同的结果,效率也会有影响(优化)。

使用贪心算法优化

1、我们获取当前位置,可有走的下一个位置的集合
ArrayList ps = next(new Point(column, row));
2、我们需要对ps中所有的Point的下一步的所有集合的数目,进行非递减排序。

优化代码

public static void sort(ArrayList<Point> ps) {
        ps.sort(new Comparator<Point>() {
            @Override
            public int compare(Point o1, Point o2) {
                // 获取o1的下一步的所有位置的个数
                int count1 = next(o1).size();
                int count2 = next(o2).size();
                if (count1 < count2) {
                    return -1;
                } else if (count1 == count2) {
                    return 0;
                } else {
                    return 1;
                }
            }
        });
}

马踏棋盘算法代码实现

package com.horse;
import java.awt.Point;
import java.util.ArrayList;
import java.util.Comparator;

public class HorseChessboard {
    private static int X;// 棋盘的列数
    private static int Y;// 棋盘的行数
    private static boolean visited[]; // 标记棋盘的位置是否被访问过
    private static boolean finished;// 标记棋盘的所有位置都被访问(是否成功)

    public static void main(String[] args) {
        // 测试骑士周游算法
        X = 8;
        Y = 8;
        int row = 1;// 马儿的初始位置行
        int column = 1;// 马儿初始位置列
        // 创建棋盘
        int[][] chessboard = new int[X][Y];
        visited = new boolean[X * Y];
        // 测试一下耗时
        long start = System.currentTimeMillis();
        traversalChessboard(chessboard, row - 1, column - 1, 1);
        long end = System.currentTimeMillis();
        System.out.println("耗时" + (end - start) + "ms");
        // 输出棋盘最后情况
        for (int[] rows : chessboard) {
            for (int step : rows) {
                System.out.printf("%4d", step);
            }
            System.out.println();
        }

    }

    
    public static void traversalChessboard(int[][] chessboard, int row, int column, int step) {
        chessboard[row][column] = step;
        visited[row * X + column] = true;// 标记该位置已访问
        // 获取当前位置可以走的下一步
        ArrayList<Point> ps = next(new Point(column, row));
        // 对ps进行非递减排序,
        sort(ps);
        // 遍历ps
        while (!ps.isEmpty()) {
            Point p = ps.remove(0);// 取出下一个可以走的位置
            // 判断是否访问过
            if (!visited[p.y * X + p.x]) {// 说明还没有访问过
                traversalChessboard(chessboard, p.y, p.x, step + 1);
            }
        }
        // 判断是否完成
        if (step < X * Y && !finished) {
            chessboard[row][column] = 0;
            visited[row * X + column] = false;
        } else {
            finished = true;
        }
    }

    
    public static ArrayList<Point> next(Point curPoint) {
        // 创建有一个ArrayList
        ArrayList<Point> ps = new ArrayList<Point>();
        // 创建Point
        Point p1 = new Point();
        // 判断马儿可以走5这个位置
        if ((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y - 1) >= 0) {
            ps.add(new Point(p1));
        }
        // 判断马儿可以走6这个位置
        if ((p1.x = curPoint.x - 1) >= 0 && (p1.y = curPoint.y - 2) >= 0) {
            ps.add(new Point(p1));
        }
        // 判断马儿可以走7这个位置
        if ((p1.x = curPoint.x + 1) < X && (p1.y = curPoint.y - 2) >= 0) {
            ps.add(new Point(p1));
        }
        // 判断马儿可以走0这个位置
        if ((p1.x = curPoint.x + 2) < X && (p1.y = curPoint.y - 1) >= 0) {
            ps.add(new Point(p1));
        }
        // 判断马儿可以走1这个位置
        if ((p1.x = curPoint.x + 2) < X && (p1.y = curPoint.y + 1) < Y) {
            ps.add(new Point(p1));
        }
        // 判断马儿可以走2这个位置
        if ((p1.x = curPoint.x + 1) < X && (p1.y = curPoint.y + 2) < Y) {
            ps.add(new Point(p1));
        }
        // 判断马儿可以走3这个位置
        if ((p1.x = curPoint.x - 1) >= 0 && (p1.y = curPoint.y + 2) < Y) {
            ps.add(new Point(p1));
        }
        // 判断马儿可以走4这个位置
        if ((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y + 1) < Y) {
            ps.add(new Point(p1));
        }
        return ps;
    }
    // 根据当前这个一步的所有的下一步的选择位置,进行非递减排序
    public static void sort(ArrayList<Point> ps) {
        ps.sort(new Comparator<Point>() {

            @Override
            public int compare(Point o1, Point o2) {
                // 获取o1的下一步的所有位置的个数
                int count1 = next(o1).size();
                int count2 = next(o2).size();
                if (count1 < count2) {
                    return -1;
                } else if (count1 == count2) {
                    return 0;
                } else {
                    return 1;
                }
            }
        });
    }
}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持编程网。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

java实现马踏棋盘算法(骑士周游问题)

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

java怎么实现马踏棋盘算法

本篇内容介绍了“java怎么实现马踏棋盘算法”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!马踏棋盘或骑士周游问题1、马踏棋盘算法也被称为骑士
2023-06-29

Java实现马踏棋盘游戏算法的代码怎么写

这篇文章主要介绍“Java实现马踏棋盘游戏算法的代码怎么写”,在日常操作中,相信很多人在Java实现马踏棋盘游戏算法的代码怎么写问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Java实现马踏棋盘游戏算法的代码
2023-06-29

Java基于分治算法实现的棋盘覆盖问题示例

本文实例讲述了Java基于分治算法实现的棋盘覆盖问题。分享给大家供大家参考,具体如下:在一个2^k * 2^k个方格组成的棋盘中,有一个方格与其它的不同,若使用以下四种L型骨牌覆盖除这个特殊方格的其它方格,如何覆盖。四个L型骨牌如下图:棋盘
2023-05-30

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录