我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python中DataFrame与内置数据结构相互转换的实现

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python中DataFrame与内置数据结构相互转换的实现

楔子

pandas 支持我们从 Excel、CSV、数据库等不同数据源当中读取数据,来构建 DataFrame。但有时数据并不来自这些外部数据源,而是来自一个已经存在的 Python 数据结构,比如列表、字典等等。

同理当需要导出 DataFrame 时,也不一定非要写到外部文件里,而是希望生成字典或者列表,那么这个时候该怎么做呢?

所以这就涉及到了 DataFrame 和 Python 内置数据结构之间的相互转换,下面来介绍一些最佳实践,你可以根据实际情况进行选择。

DataFrame 转成内置数据结构

假设有这样一个 DataFrame:

import pandas as pd

df = pd.DataFrame({"name": ["Satori", "Koishi", "Marisa"],
                   "score": [99, 98, 100],
                   "rank": [2, 3, 1]})

print(df)
"""
     name  score  rank
0  Satori     99     2
1  Koishi     98     3
2  Marisa    100     1
"""

那么看看 DataFrame 都提供了哪些方法,以及在转成内置数据结构之后是什么样子?

df.to_records()

将 DataFrame 转成 Numpy 的数组,数组里面是一个个的元组。

print(df.to_records())
"""
[(0, 'Satori',  99, 2) (1, 'Koishi',  98, 3) (2, 'Marisa', 100, 1)]
"""
# 返回的时候将索引也带上了,我们可以去掉
print(df.to_records(index=False))
"""
[('Satori',  99, 2) ('Koishi',  98, 3) ('Marisa', 100, 1)]
"""
# df.to_records 返回的是 numpy 的数组,可以再转成列表
print(df.to_records(index=False).tolist())
"""
[('Satori', 99, 2), ('Koishi', 98, 3), ('Marisa', 100, 1)]
"""

这种数据结构还是很常见的,在工作中经常会用到。但唯一不好的是,字段信息丢失了。

df.to_dict()

将 DataFrame 转成 Python 的字典。

# 返回 Python 的字典,key 是字段名,value 是对应的每一列
print(df.to_dict())
"""
{'name': {0: 'Satori', 1: 'Koishi', 2: 'Marisa'},
 'rank': {0: 2, 1: 3, 2: 1},
 'score': {0: 99, 1: 98, 2: 100}}
"""

# 但这里的 value 有一些问题,就是它把索引也包含在里面了
# 我们可以去掉它
print(
    {k: tuple(v.values()) for k, v in df.to_dict().items()}
)
"""
{'name': ('Satori', 'Koishi', 'Marisa'),
 'rank': (2, 3, 1),
 'score': (99, 98, 100)}
"""

# 当然啦,to_dict() 还可以手动实现
print(
    {col: tuple(df[col]) for col in df.columns}
)
"""
{'name': ('Satori', 'Koishi', 'Marisa'),
 'rank': (2, 3, 1),
 'score': (99, 98, 100)}
"""

这种格式的数据用的就不多了,用得更多的是下一种。

df.to_dict(orient="records")

将 DataFrame 转成 Python 的列表,列表里面是一个个的字典,每个字典代表数据的每一行。

print(df.to_dict(orient="records"))
"""
[{'name': 'Satori', 'rank': 2, 'score': 99},
 {'name': 'Koishi', 'rank': 3, 'score': 98},
 {'name': 'Marisa', 'rank': 1, 'score': 100}]
"""

个人觉得这种数据结构应该用得最多。

DataFrame 生成的数据还有其它格式,这里就不赘述了,常用的就是上面几种。

内置数据结构转成 DataFrame

内置数据结构转成 DataFrame,我们也来介绍几个最常用的场景。

import pandas as pd

data = [{'name': 'Satori', 'rank': 2, 'score': 99},
        {'name': 'Koishi', 'rank': 3, 'score': 98},
        {'name': 'Marisa', 'rank': 1, 'score': 100}]

# 对于这种数据,可以通过 DataFrame 的 from_records 方法
# 列表里的字典代表了 DataFrame 的每一行,每个字典都具有相同的 key
# 而这些 key 则表示 DataFrame 的列
print(pd.DataFrame.from_records(data))
"""
     name  rank  score
0  Satori     2     99
1  Koishi     3     98
2  Marisa     1    100
"""
# 或者更简单的,直接调用 pd.DataFrame 即可
print(pd.DataFrame(data))
"""
     name  rank  score
0  Satori     2     99
1  Koishi     3     98
2  Marisa     1    100
"""
# 如果列表里面的字典,不具备相同的 key,会怎么样呢?
data[2]["length"] = 155
print(pd.DataFrame(data))
"""
     name  rank  score  length
0  Satori     2     99     NaN
1  Koishi     3     98     NaN
2  Marisa     1    100   155.0
"""
# 很简单,会将所有的 key 都考虑在内
# 如果某一行没有指定的 key,那么对应的值就是空

当然数据也可能是这种格式:

import pandas as pd

data = {'2020-01-01': {'name': 'Satori', 'rank': 2, 'score': 99},
        '2020-01-02': {'name': 'Koishi', 'rank': 3, 'score': 98},
        '2020-01-03': {'name': 'Marisa', 'rank': 1, 'score': 100}}

print(pd.DataFrame.from_dict(data, orient="index"))
"""
              name  rank  score
2020-01-01  Satori     2     99
2020-01-02  Koishi     3     98
2020-01-03  Marisa     1    100
"""

最后一种:

import pandas as pd

data = {'name': ['Satori', 'Koishi', 'Marisa'],
        'rank': [2, 3, 1],
        'score': [99, 98, 100]}
# 直接调用 DataFrame 即可
print(pd.DataFrame(data))
"""
     name  rank  score
0  Satori     2     99
1  Koishi     3     98
2  Marisa     1    100
"""

上面就是本文的内容,比较简单。并且相关函数的具体用法,也没有详细说明,只是从工作角度介绍了一些最佳实践。更多内容,可以查看 pandas 的注释。

到此这篇关于Python中DataFrame与内置数据结构相互转换的实现的文章就介绍到这了,更多相关Python DataFrame内置数据结构内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python中DataFrame与内置数据结构相互转换的实现

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python中DataFrame与内置数据结构相互转换的实现

pandas 支持我们从 Excel、CSV、数据库等不同数据源当中读取数据,来构建 DataFrame。但有时数据并不来自这些外部数据源,这就涉及到了 DataFrame 和 Python 内置数据结构之间的相互转换,本文就来和大家详细聊聊
2023-02-10

abap结构或内表怎么实现与json字符串相互转换.

本篇内容介绍了“abap结构或内表怎么实现与json字符串相互转换.”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!可使用的类有很多,如cl_
2023-06-04

Python实现列表转换成字典数据结构的方法

本文实例讲述了Python实现列表转换成字典数据结构的方法。分享给大家供大家参考,具体如下:''' [{'symbol': 101, 'sort': 1, 'name': 'aaaa'},{'symbol': 102, 'sort': 2,
2022-06-04

Python数据结构与算法中的栈怎么实现

这篇文章主要介绍“Python数据结构与算法中的栈怎么实现”,在日常操作中,相信很多人在Python数据结构与算法中的栈怎么实现问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Python数据结构与算法中的栈怎
2023-06-29

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录