Python+OpenCV自制AI视觉版贪吃蛇游戏
介绍
各位同学好,今天和大家分享一下如何使用 mediapipe+opencv 自制贪吃蛇小游戏。先放张图看效果。
规则:食指指尖控制蛇头,指尖每接触到黄色方块,计数加一,蛇身变长,方块随机切换位置。如果指尖停止移动,或者移动过程中蛇头撞到蛇身,那么游戏结束。点击键盘上的R键重新开始游戏。
游戏进行时:
游戏结束界面:
1. 安装工具包
pip install opencv_python==4.2.0.34 # 安装opencv
pip install mediapipe # 安装mediapipe
# pip install mediapipe --user #有user报错的话试试这个
pip install cvzone # 安装cvzone
# 导入工具包
import cv2
import cvzone
import numpy as np
from cvzone.HandTrackingModule import HandDetector # 导入手部检测模块
import math
import random
21个手部关键点信息如下,本节我们主要研究食指指尖'8'的坐标(x,y)信息。
2. 检测手部关键点
(1)cvzone.HandTrackingModule.HandDetector()是手部关键点检测方法
参数:
mode: 默认为 False,将输入图像视为视频流。它将尝试在第一个输入图像中检测手,并在成功检测后进一步定位手的坐标。在随后的图像中,一旦检测到所有 maxHands 手并定位了相应的手的坐标,它就会跟踪这些坐标,而不会调用另一个检测,直到它失去对任何一只手的跟踪。这减少了延迟,非常适合处理视频帧。如果设置为 True,则在每个输入图像上运行手部检测,用于处理一批静态的、可能不相关的图像。
maxHands: 最多检测几只手,默认为 2
detectionCon: 手部检测模型的最小置信值(0-1之间),超过阈值则检测成功。默认为 0.5
minTrackingCon: 坐标跟踪模型的最小置信值 (0-1之间),用于将手部坐标视为成功跟踪,不成功则在下一个输入图像上自动调用手部检测。将其设置为更高的值可以提高解决方案的稳健性,但代价是更高的延迟。如果 mode 为 True,则忽略这个参数,手部检测将在每个图像上运行。默认为 0.5
它的参数和返回值类似于官方函数 mediapipe.solutions.hands.Hands()
MULTI_HAND_LANDMARKS: 被检测/跟踪的手的集合,其中每只手被表示为21个手部地标的列表,每个地标由x, y, z组成。x和y分别由图像的宽度和高度归一化为[0,1]。Z表示地标深度。
MULTI_HANDEDNESS: 被检测/追踪的手是左手还是右手的集合。每只手由label(标签)和score(分数)组成。 label 是 'Left' 或 'Right' 值的字符串。 score 是预测左右手的估计概率。
(2)cvzone.HandTrackingModule.HandDetector.findHands()找到手部关键点并绘图
参数:
img: 需要检测关键点的帧图像,格式为BGR
draw: 是否需要在原图像上绘制关键点及识别框
flipType: 图像是否需要翻转,当视频图像和我们自己不是镜像关系时,设为True就可以了
返回值:
hands: 检测到的手部信息,由0或1或2个字典组成的列表。如果检测到两只手就是由两个字典组成的列表。字典中包含:21个关键点坐标(x,y,z),检测框左上坐标及其宽高,检测框中心点坐标,检测出是哪一只手。
img: 返回绘制了关键点及连线后的图像
代码如下:
import cv2
import cvzone
import numpy as np
from cvzone.HandTrackingModule import HandDetector # 导入手部检测模块
#(1)获取摄像头
cap = cv2.VideoCapture(0) # 0代表电脑自带的摄像头
# 设置显示窗口的size
cap.set(3, 1280) # 窗口宽1280
cap.set(4, 720) # 窗口高720
#(2)模型配置
detector = HandDetector(maxHands=1, # 最多检测1只手
detectionCon=0.8) # 最小检测置信度0.8
#(3)图像处理
while True:
# 每次读取一帧相机图像,返回是否读取成功success,读取的帧图像img
success, img = cap.read()
# 图像翻转,使图像和自己呈镜像关系
img = cv2.flip(img, 1) # 0代表上下翻转,1代表左右翻转
# 检测手部关键点。返回手部信息hands,绘制关键点后的图像img
hands, img = detector.findHands(img, flipType=False) # 由于上一行翻转过图像了,这里就不用翻转了
# 查看关键点信息
print(hands)
#(4)关键点处理
if hands: # 如果检测到手了,那就处理关键点
# 获得食指指尖坐标(x,y)
hand = hands[0] # 获取一只手的全部信息
lmList = hand['lmList'] # 获得这只手的21个关键点的坐标(x,y,z)
pointIndex = lmList[8][0:2] # 只获取食指指尖关键点的(x,y)坐标
# 以食指指尖为圆心画圈(圆心坐标是元组类型),半径为15,青色填充
cv2.circle(img, tuple(pointIndex), 15, (255,0,0), cv2.FILLED)
#(5)显示图像
cv2.imshow('img', img) # 输入图像显示窗口的名称及图像
# 每帧滞留1毫秒后消失,并且按下ESC键退出
if cv2.waitKey(1) & 0xFF == 27:
break
# 释放视频资源
cap.release()
cv2.destroyAllWindows()
效果图如下:
打印手部关键点信息如下:
[{'lmList': [[1152, 675, 0], [1085, 693, -37], [1030, 698, -68], [1003, 698, -97], [1003, 679, -122], [1001, 511, -48], [1041, 546, -81], [1093, 608, -102], [1134, 652, -110], [1075, 484, -46], [1119, 534, -84], [1171, 605, -101], [1217, 659, -103], [1141, 481, -45], [1177, 529, -83], [1219, 590, -84], [1253, 642, -73], [1195, 494, -47], [1221, 521, -73], [1245, 566, -65], [1267, 602, -49]],
'bbox': (1001, 481, 266, 217),
'center': (1134, 589),
'type': 'Right'}]
3. 蛇身移动
构造一个处理蛇身移动的类,要求在没吃食物时,蛇身保持固定的长度跟随食指指尖移动。
举个例子,如果当前的蛇身节点列表 self.points 包含 [a, b, c, d] 这四个节点,a节点代表蛇尾,d节点代表蛇头。在下一帧,食指指尖移动到 e 点,将 e 节点追加到蛇身节点列表中,那么现在的列表包含 [a, b, c, d, e] 节点,其中 e 节点为新的蛇头。
此时判断当前蛇身总长度 self.currentLength(列表中所有节点之间的长度之和)是否大于蛇身固定长度 self.allowedLength,保证在移动过程中蛇身长度不变。
如果当前蛇身总长度 self.currentLength 大于固定长度 self.allowedLength,那么在节点列表中从尾到头依次删除节点,列表 [a, b, c, d, e] 中 a 表示蛇尾节点,先删除,判断列表 [b, c, d, e] 的节点之间的总长度是否满足要求。若仍大于固定长度,那么就再删除 b 节点,再判断。
如果当前蛇身总长度 self.currentLength 小于固定长度 self.allowedLength,那么就不做任何处理。
在上述代码中补充:
import cv2
import cvzone
import numpy as np
from cvzone.HandTrackingModule import HandDetector # 导入手部检测模块
import math
# 构造一个贪吃蛇移动的类
class SnakeGameClass:
#(一)初始化
def __init__(self):
self.points = [] # 蛇的身体的节点坐标
self.lengths = [] # 蛇身各个节点之间的坐标
self.currentLength = 0 # 当前蛇身长度
self.allowedLength = 150 # 没吃东西时,蛇的总长度
self.previousHead = (0,0) # 前一个蛇头节点的坐标
#(二)更新增加蛇身长度
def update(self, imgMain, currentHead): # 输入图像,当前蛇头的坐标
px, py = self.previousHead # 获得前一个蛇头的x和y坐标
cx, cy = currentHead # 当前蛇头节点的x和y坐标
# 添加当前蛇头的坐标到蛇身节点坐标列表中
self.points.append([cx,cy])
# 计算两个节点之间的距离
distance = math.hypot(cx-px, cy-py) # 计算平方和开根
# 将节点之间的距离添加到蛇身节点距离列表中
self.lengths.append(distance)
# 增加当前蛇身长度
self.currentLength += distance
# 更新蛇头坐标
self.previousHead = (cx,cy)
#(三)减少蛇尾长度,即移动过程中蛇头到蛇尾的长度不大于150
if self.currentLength > self.allowedLength:
# 遍历所有的节点线段长度。新更新的蛇头索引在列表后面,蛇尾的索引在列表前面
for i, length in enumerate(self.lengths):
# 从蛇尾到蛇头依次减线段长度,得到的长度是否满足要求
self.currentLength -= length
# 从列表中删除蛇尾端的线段长度,以及蛇尾节点
self.lengths.pop(i)
self.points.pop(i)
# 如果当前蛇身长度小于规定长度,满足要求,退出循环
if self.currentLength < self.allowedLength:
break
#(四)绘制蛇
# 当节点列表中有值了,才能绘制
if self.points:
# 遍历蛇身节点坐标
for i, point in enumerate(self.points):
# 绘制前后两个节点之间的连线
if i != 0:
cv2.line(imgMain, tuple(self.points[i-1]), tuple(self.points[i]), (0,255,0), 20)
# 在蛇头的位置画个圆
cv2.circle(imgMain, tuple(self.points[-1]), 20, (255,0,0), cv2.FILLED)
# 返回更新后的图像
return imgMain
#(1)获取摄像头
cap = cv2.VideoCapture(0) # 0代表电脑自带的摄像头
# 设置显示窗口的size
cap.set(3, 1280) # 窗口宽1280
cap.set(4, 720) # 窗口高720
#(2)模型配置
detector = HandDetector(maxHands=1, # 最多检测1只手
detectionCon=0.8) # 最小检测置信度0.8
# 接收创建贪吃蛇的类
game = SnakeGameClass()
#(3)图像处理
while True:
# 每次读取一帧相机图像,返回是否读取成功success,读取的帧图像img
success, img = cap.read()
# 图像翻转,使图像和自己呈镜像关系
img = cv2.flip(img, 1) # 0代表上下翻转,1代表左右翻转
# 检测手部关键点。返回手部信息hands,绘制关键点后的图像img
hands, img = detector.findHands(img, flipType=False) # 由于上一行翻转过图像了,这里就不用翻转了
# 查看关键点信息
print(hands)
#(4)关键点处理
if hands: # 如果检测到手了,那就处理关键点
# 获得食指指尖坐标(x,y)
hand = hands[0] # 获取一只手的全部信息
lmList = hand['lmList'] # 获得这只手的21个关键点的坐标(x,y,z)
pointIndex = lmList[8][0:2] # 只获取食指指尖关键点的(x,y)坐标
# 更新贪吃蛇的节点,给出蛇头节点坐标。返回更新后的图像
img = game.update(img, pointIndex)
#(5)显示图像
cv2.imshow('img', img) # 输入图像显示窗口的名称及图像
# 每帧滞留1毫秒后消失,并且按下ESC键退出
if cv2.waitKey(1) & 0xFF == 27:
break
# 释放视频资源
cap.release()
cv2.destroyAllWindows()
效果图如下,蛇身保持默认固定长度随着指尖而移动。
4. 蛇进食增加身体长度
先看下面代码 SnakeGameClass 类中的第(五)步。给食物(即绘制的矩形)随机给出一个中心点坐标,自定义的类方法 randomFoodLocation(),执行该方法则食物的中心点坐标的x在[100,1000]中随机取一个数,y在[100,600]中随机取一个数。
下面代码定义的类中的第(七)步。判断食指指尖(即蛇头节点坐标)是否在矩形内部,如果在内部,那么蛇身移动过程中的固定长度 self.allowedLength 增加50个像素值。得分 self.score 加一。并在下一帧随机改变食物的位置。
在上述代码中补充:
import cv2
import cvzone
import numpy as np
from cvzone.HandTrackingModule import HandDetector # 导入手部检测模块
import math
import random
# 构造一个贪吃蛇移动的类
class SnakeGameClass:
#(一)初始化
def __init__(self):
self.score = 0 # 积分器
self.points = [] # 蛇的身体的节点坐标
self.lengths = [] # 蛇身各个节点之间的坐标
self.currentLength = 0 # 当前蛇身长度
self.allowedLength = 150 # 没吃东西时,蛇的总长度
self.previousHead = (0,0) # 前一个蛇头节点的坐标
self.foodPoint = (0,0) # 食物的起始位置
self.randomFoodLocation() # 随机改变食物的位置
#(五)食物随机出现的位置
def randomFoodLocation(self):
# x在100至1000之间,y在100至600之间,随机取一个整数
self.foodPoint = random.randint(100, 1000), random.randint(100, 600)
#(二)更新增加蛇身长度
def update(self, imgMain, currentHead): # 输入图像,当前蛇头的坐标
px, py = self.previousHead # 获得前一个蛇头的x和y坐标
cx, cy = currentHead # 当前蛇头节点的x和y坐标
# 添加当前蛇头的坐标到蛇身节点坐标列表中
self.points.append([cx,cy])
# 计算两个节点之间的距离
distance = math.hypot(cx-px, cy-py) # 计算平方和开根
# 将节点之间的距离添加到蛇身节点距离列表中
self.lengths.append(distance)
# 增加当前蛇身长度
self.currentLength += distance
# 更新蛇头坐标
self.previousHead = (cx,cy)
#(三)减少蛇尾长度,即移动过程中蛇头到蛇尾的长度不大于150
if self.currentLength > self.allowedLength:
# 遍历所有的节点线段长度。新更新的蛇头索引在列表后面,蛇尾的索引在列表前面
for i, length in enumerate(self.lengths):
# 从蛇尾到蛇头依次减线段长度,得到的长度是否满足要求
self.currentLength -= length
# 从列表中删除蛇尾端的线段长度,以及蛇尾节点
self.lengths.pop(i)
self.points.pop(i)
# 如果当前蛇身长度小于规定长度,满足要求,退出循环
if self.currentLength < self.allowedLength:
break
#(七)检查蛇是否吃了食物
rx, ry = self.foodPoint # 得到食物的中心点坐标位置
# 绘制矩形作为蛇的食物
cv2.rectangle(imgMain, (rx-20, ry-20), (rx+20, ry+20), (255,255,0), cv2.FILLED)
cv2.rectangle(imgMain, (rx-20, ry-20), (rx+20, ry+20), (0,255,255), 5)
cv2.rectangle(imgMain, (rx-5, ry-5), (rx+5, ry+5), (0,0,255), cv2.FILLED)
# 检查指尖(即蛇头cx,cy)是否在矩形内部
if rx-20 < cx < rx+20 and ry-20< cy < ry+20:
# 随机更换食物的位置
self.randomFoodLocation()
# 增加蛇身的限制长度,每吃1个食物就能变长50
self.allowedLength += 50
# 吃食物的计数加一
self.score += 1
print('eat!', f'score:{self.score}')
#(四)绘制蛇
# 当节点列表中有值了,才能绘制
if self.points:
# 遍历蛇身节点坐标
for i, point in enumerate(self.points):
# 绘制前后两个节点之间的连线
if i != 0:
cv2.line(imgMain, tuple(self.points[i-1]), tuple(self.points[i]), (0,255,0), 20)
cv2.line(imgMain, tuple(self.points[i-1]), tuple(self.points[i]), (0,0,255), 15)
# 在蛇头的位置画个圆
cv2.circle(imgMain, tuple(self.points[-1]), 20, (255,255,0), cv2.FILLED)
cv2.circle(imgMain, tuple(self.points[-1]), 18, (255,0,0), 3)
cv2.circle(imgMain, tuple(self.points[-1]), 5, (0,0,0), cv2.FILLED)
# 返回更新后的图像
return imgMain
#(1)获取摄像头
cap = cv2.VideoCapture(0) # 0代表电脑自带的摄像头
# 设置显示窗口的size
cap.set(3, 1280) # 窗口宽1280
cap.set(4, 720) # 窗口高720
#(2)模型配置
detector = HandDetector(maxHands=1, # 最多检测1只手
detectionCon=0.8) # 最小检测置信度0.8
# 接收创建贪吃蛇的类
game = SnakeGameClass()
#(3)图像处理
while True:
# 每次读取一帧相机图像,返回是否读取成功success,读取的帧图像img
success, img = cap.read()
# 图像翻转,使图像和自己呈镜像关系
img = cv2.flip(img, 1) # 0代表上下翻转,1代表左右翻转
# 检测手部关键点。返回手部信息hands,绘制关键点后的图像img
hands, img = detector.findHands(img, flipType=False) # 由于上一行翻转过图像了,这里就不用翻转了
#(4)关键点处理
if hands: # 如果检测到手了,那就处理关键点
# 获得食指指尖坐标(x,y)
hand = hands[0] # 获取一只手的全部信息
lmList = hand['lmList'] # 获得这只手的21个关键点的坐标(x,y,z)
pointIndex = lmList[8][0:2] # 只获取食指指尖关键点的(x,y)坐标
# 更新贪吃蛇的节点,给出蛇头节点坐标。返回更新后的图像
img = game.update(img, pointIndex)
#(5)显示图像
cv2.imshow('img', img) # 输入图像显示窗口的名称及图像
# 每帧滞留1毫秒后消失,并且按下ESC键退出
if cv2.waitKey(1) & 0xFF == 27:
break
# 释放视频资源
cap.release()
cv2.destroyAllWindows()
效果图如下:
5. 自身碰撞及界面的处理
先看到自定义类 SnakeGameClass 中的第(八)步,蛇身节点列表 self.points 中包含从蛇头到蛇尾的所有节点。如 [a, b, c, d, e] 节点,a 节点代表蛇尾,e 节点代表蛇头。这里我就粗糙地判断一下是否碰撞,如果大家有更好的判断方法可以改动这第(八)步。计算蛇头 e 节点到所有节点之间的距离,如果小于某个值就代表碰撞了,游戏结束 self.gameover = True
再看到自定义类中的第(三)步。如果游戏结束 self.gameover = True,那就在下一帧中绘制结算界面,不再执行蛇身移动程序。
再看到主程序中的第(5)步。其中 k == ord('r'),按下键盘上的 r 键来重新游戏。将所有蛇身变量初始化,并将 self.gameover = False,退出结算界面,使得下一帧能执行蛇身移动操作。
在上述代码中补充:
import cv2
import cvzone
from matplotlib.cbook import pts_to_midstep
import numpy as np
from cvzone.HandTrackingModule import HandDetector # 导入手部检测模块
import math
import random
# 构造一个贪吃蛇移动的类
class SnakeGameClass:
#(一)初始化
def __init__(self):
self.score = 0 # 积分器
self.points = [] # 蛇的身体的节点坐标
self.lengths = [] # 蛇身各个节点之间的坐标
self.currentLength = 0 # 当前蛇身长度
self.allowedLength = 150 # 没吃东西时,蛇的总长度
self.previousHead = (0,0) # 前一个蛇头节点的坐标
self.foodPoint = (0,0) # 食物的起始位置
self.randomFoodLocation() # 随机改变食物的位置
self.gameover = False # 蛇头撞到蛇身,变成True,游戏结束
#(二)食物随机出现的位置
def randomFoodLocation(self):
# x在100至1000之间,y在100至600之间,随机取一个整数
self.foodPoint = random.randint(100, 1000), random.randint(100, 600)
#(三)更新增加蛇身长度
def update(self, imgMain, currentHead): # 输入图像,当前蛇头的坐标
# 游戏结束,显示文本
if self.gameover:
cvzone.putTextRect(imgMain, 'GameOver', [400,300], 5, 3, colorR=(0,255,255), colorT=(0,0,255))
cvzone.putTextRect(imgMain, f'Score:{self.score}', [450,400], 5, 3, colorR=(255,255,0))
cvzone.putTextRect(imgMain, f"Press Key 'R' to Restart", [230,500], 4, 3, colorR=(0,255,0), colorT=(255,0,0))
else:
px, py = self.previousHead # 获得前一个蛇头的x和y坐标
cx, cy = currentHead # 当前蛇头节点的x和y坐标
# 添加当前蛇头的坐标到蛇身节点坐标列表中
self.points.append([cx,cy])
# 计算两个节点之间的距离
distance = math.hypot(cx-px, cy-py) # 计算平方和开根
# 将节点之间的距离添加到蛇身节点距离列表中
self.lengths.append(distance)
# 增加当前蛇身长度
self.currentLength += distance
# 更新蛇头坐标
self.previousHead = (cx,cy)
#(四)减少蛇尾长度,即移动过程中蛇头到蛇尾的长度不大于150
if self.currentLength > self.allowedLength:
# 遍历所有的节点线段长度。新更新的蛇头索引在列表后面,蛇尾的索引在列表前面
for i, length in enumerate(self.lengths):
# 从蛇尾到蛇头依次减线段长度,得到的长度是否满足要求
self.currentLength -= length
# 从列表中删除蛇尾端的线段长度,以及蛇尾节点
self.lengths.pop(i)
self.points.pop(i)
# 如果当前蛇身长度小于规定长度,满足要求,退出循环
if self.currentLength < self.allowedLength:
break
#(五)绘制得分板
cvzone.putTextRect(imgMain, f'Score:{self.score}', [50,80], 4, 3, colorR=(255,255,0))
#(六)检查蛇是否吃了食物
rx, ry = self.foodPoint # 得到食物的中心点坐标位置
# 绘制矩形作为蛇的食物
cv2.rectangle(imgMain, (rx-20, ry-20), (rx+20, ry+20), (255,255,0), cv2.FILLED)
cv2.rectangle(imgMain, (rx-20, ry-20), (rx+20, ry+20), (0,255,255), 5)
cv2.rectangle(imgMain, (rx-5, ry-5), (rx+5, ry+5), (0,0,255), cv2.FILLED)
# 检查指尖(即蛇头cx,cy)是否在矩形内部
if rx-20 < cx < rx+20 and ry-20< cy < ry+20:
# 随机更换食物的位置
self.randomFoodLocation()
# 增加蛇身的限制长度,每吃1个食物就能变长50
self.allowedLength += 50
# 吃食物的计数加一
self.score += 1
print('eat!', f'score:{self.score}')
#(七)绘制蛇
# 当节点列表中有值了,才能绘制
if self.points:
# 遍历蛇身节点坐标
for i, point in enumerate(self.points):
# 绘制前后两个节点之间的连线
if i != 0:
cv2.line(imgMain, tuple(self.points[i-1]), tuple(self.points[i]), (0,255,0), 20)
cv2.line(imgMain, tuple(self.points[i-1]), tuple(self.points[i]), (0,0,255), 15)
# 在蛇头的位置画个圆
cv2.circle(imgMain, tuple(self.points[-1]), 20, (255,255,0), cv2.FILLED)
cv2.circle(imgMain, tuple(self.points[-1]), 18, (255,0,0), 3)
cv2.circle(imgMain, tuple(self.points[-1]), 5, (0,0,0), cv2.FILLED)
#(八)检查蛇头碰撞到自身
for point in self.points[:-2]: # 不算蛇头到自身的距离
# 计算蛇头和每个节点之间的距离
dist = math.hypot(cx-point[0], cy-point[1])
# 如果距离小于1.8,那么就证明碰撞了
if dist < 1.8:
# 游戏结束
self.gameover = True
# 返回更新后的图像
return imgMain
#(1)获取摄像头
cap = cv2.VideoCapture(0) # 0代表电脑自带的摄像头
# 设置显示窗口的size
cap.set(3, 1280) # 窗口宽1280
cap.set(4, 720) # 窗口高720
#(2)模型配置
detector = HandDetector(maxHands=1, # 最多检测1只手
detectionCon=0.8) # 最小检测置信度0.8
# 接收创建贪吃蛇的类
game = SnakeGameClass()
#(3)图像处理
while True:
# 每次读取一帧相机图像,返回是否读取成功success,读取的帧图像img
success, img = cap.read()
# 图像翻转,使图像和自己呈镜像关系
img = cv2.flip(img, 1) # 0代表上下翻转,1代表左右翻转
# 检测手部关键点。返回手部信息hands,绘制关键点后的图像img
hands, img = detector.findHands(img, flipType=False) # 由于上一行翻转过图像了,这里就不用翻转了
#(4)关键点处理
if hands: # 如果检测到手了,那就处理关键点
# 获得食指指尖坐标(x,y)
hand = hands[0] # 获取一只手的全部信息
lmList = hand['lmList'] # 获得这只手的21个关键点的坐标(x,y,z)
pointIndex = lmList[8][0:2] # 只获取食指指尖关键点的(x,y)坐标
# 更新贪吃蛇的节点,给出蛇头节点坐标。返回更新后的图像
img = game.update(img, pointIndex)
#(5)显示图像
cv2.imshow('img', img) # 输入图像显示窗口的名称及图像
# 重新开始游戏
k = cv2.waitKey(1) # 每帧滞留1毫秒后消失
if k == ord('r'): # 键盘'r'键代表重新开始游戏
game.gameover = False
game.score = 0 # 积分器
game.points = [] # 蛇的身体的节点坐标
game.lengths = [] # 蛇身各个节点之间的坐标
game.currentLength = 0 # 当前蛇身长度
game.allowedLength = 150 # 没吃东西时,蛇的总长度
game.previousHead = (0,0) # 前一个蛇头节点的坐标
game.randomFoodLocation() # 随机改变食物的位置
if k & 0xFF == 27: # 键盘ESC键退出程序
break
# 释放视频资源
cap.release()
cv2.destroyAllWindows()
效果图如下,在移动过程中,蛇头每碰到一个食物,蛇身就会变长,如果 停止移动 或 蛇头节点距离蛇身节点过近 就会结束游戏。
以上就是Python+OpenCV自制AI视觉版贪吃蛇游戏的详细内容,更多关于Python OpenCV贪吃蛇的资料请关注编程网其它相关文章!
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341