我的编程空间,编程开发者的网络收藏夹
学习永远不晚

plotly分割显示mnist的方法详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

plotly分割显示mnist的方法详解

加载mnist


import numpy
def loadMnist() -> (numpy.ndarray,numpy.ndarray,numpy.ndarray,numpy.ndarray):
    """
    :return:  (xTrain,yTrain,xTest,yTest)
    """
    global _TRAIN_SAMPLE_CNT
    global PIC_H
    global PIC_W
    global _TEST_SAMPLE_CNT
    global PIC_HW
    from tensorflow import keras #修改点: tensorflow:2.6.2,keras:2.6.0 此版本下,  import keras 换成 from tensorflow import keras
    import tensorflow
    print(f"keras.__version__:{keras.__version__}")#2.6.0
    print(f"tensorflow.__version__:{tensorflow.__version__}")#2.6.2
    # avatar_img_path = "/kaggle/working/data"

    import os
    import cv2
    xTrain:numpy.ndarray; label_train:numpy.ndarray; xTest:numpy.ndarray; label_test:numpy.ndarray
    yTrain:numpy.ndarray; yTest:numpy.ndarray
    #%userprofile%\.keras\datasets\mnist.npz
    (xTrain, label_train), (xTest, label_test) = keras.datasets.mnist.load_data()
    # x_train.shape,y_train.shape, x_test.shape, label_test.shape
    # (60000, 28, 28), (60000,), (10000, 28, 28), (10000,)
    _TRAIN_SAMPLE_CNT,PIC_H,PIC_W=xTrain.shape
    PIC_HW=PIC_H*PIC_W
    xTrain=xTrain.reshape((-1, PIC_H * PIC_W))
    xTest=xTest.reshape((-1, PIC_H * PIC_W))
    _TEST_SAMPLE_CNT=label_test.shape[0]

    from sklearn import preprocessing

    #pytorch 的 y 不需要 oneHot
    #_label_train是1列多行的样子.  _label_train.shape : (60000, 1)
    yTrain=label_train
    # y_train.shape:(60000) ; y_train.dtype: dtype('int')
    CLASS_CNT=yTrain.shape[0]
    yTest=label_test
    # y_test.shape:(10000) ; y_test.dtype: dtype('int')
    xTrainMinMaxScaler:preprocessing.MinMaxScaler; xTestMinMaxScaler:preprocessing.MinMaxScaler
    xTrainMinMaxScaler=preprocessing.MinMaxScaler()
    xTestMinMaxScaler=preprocessing.MinMaxScaler()
    # x_train.dtype: dtype('uint8') -> dtype('float64')
    xTrain=xTrainMinMaxScaler.fit_transform(xTrain)
    # x_test.dtype: dtype('uint8') -> dtype('float64')
    xTest = xTestMinMaxScaler.fit_transform(xTest)
    return (xTrain,yTrain,xTest,yTest)
xTrain:torch.Tensor;yTrain:torch.Tensor; xTest:torch.Tensor; yTest:torch.Tensor(xTrain,yTrain,xTest,yTest)=loadMnist()

plotly 显示多个mnist样本

import plotly.express
import plotly.graph_objects
import plotly.subplots
import numpy
xTrain:numpy.ndarray=numpy.random.random((2,28,28))
#xTrain[0].shape:(28,28)
#fig:plotly.graph_objects.Figure=None
fig=plotly.subplots.make_subplots(rows=1,cols=2,shared_xaxes=True,shared_yaxes=True) #共1行2列
fig.add_trace(trace=plotly.express.imshow(img=xTrain[0]).data[0],row=1,col=1) #第1行第1列
fig.add_trace(trace=plotly.express.imshow(img=xTrain[1]).data[0],row=1,col=2) #第1行第2列
fig.show()
#参数row、col从1开始,  不是从0开始的

plotly 显示单个图片


import numpy
xTrain:numpy.ndarray=numpy.random.random((2,28,28))
#xTrain[0].shape:(28,28)
import plotly.express
import plotly.graph_objects
plotly.express.imshow(img=xTrain[0]).show()
#其中plotly.express.imshow(img=xTrain[0]) 的类型是 plotly.graph_objects.Figure

xTrain[0]显示如下:

请添加图片描述

mnist单样本分拆显示

#mnist单样本分割 分割成4*4小格子显示出来, 以确认分割的对不对。 以下代码是正确的分割。 主要逻辑是:   (7,4,7,4)   [h, :, w, :] 
fig:plotly.graph_objects.Figure=plotly.subplots.make_subplots(rows=7,cols=7,shared_xaxes=True,shared_yaxes=True,vertical_spacing=0,horizontal_spacing=0)
xTrain0Img:torch.Tensor=xTrain[0].reshape((PIC_H,PIC_W))
plotly.express.imshow(img=xTrain0Img).show()
xTrain0ImgCells:torch.Tensor=xTrain0Img.reshape((7,4,7,4))
for h in range(7):
    for w in range(7):
        print(f"h,w:{h},{w}")
        fig.add_trace(trace=plotly.express.imshow(xTrain0ImgCells[h,:,w,:]).data[0],col=h+1,row=w+1)
fig.show()

mnist单样本分拆显示结果: 由此图可知 (7,4,7,4) [h, :, w, :] 是正常的取相邻的像素点出而形成的4*4的小方格 ,这正是所需要的

请添加图片描述

上图显示 的 横坐标拉伸比例大于纵坐标 所以看起来像一个被拉横了的手写数字5 ,如果能让plotly把横纵拉伸比例设为相等 上图会更像手写数字5

可以用torch.swapdim进一步改成以下代码

    """
    mnist单样本分割 分割成4*4小格子显示出来, 重点逻辑是: (7, 4, 7, 4)  [h, :, w, :]
    :param xTrain:
    :return:
    """
    fig: plotly.graph_objects.Figure = plotly.subplots.make_subplots(rows=7, cols=7, shared_xaxes=True,  shared_yaxes=True, vertical_spacing=0,  horizontal_spacing=0)
    xTrain0Img: torch.Tensor = xTrain[0].reshape((PIC_H, PIC_W))
    plotly.express.imshow(img=xTrain0Img).show()
    xTrain0ImgCells: torch.Tensor = xTrain0Img.reshape((7, 4, 7, 4))
    xTrain0ImgCells=torch.swapdims(input=xTrain0ImgCells,dim0=1,dim1=2)#交换 (7, 4, 7, 4) 维度1、维度2 即 (0:7, 1:4, 2:7, 3:4)
    for h in range(7):
        for w in range(7):
            print(f"h,w:{h},{w}")
            fig.add_trace(trace=plotly.express.imshow(xTrain0ImgCells[h, w]).data[0], col=h + 1, row=w + 1) # [h, w, :, :] 或 [h, w]
    fig.show()

mnist单样本错误的分拆显示

以下 mnist单样本错误的分拆显示:

# mnist单样本错误的分拆显示:
    fig: plotly.graph_objects.Figure = plotly.subplots.make_subplots(rows=7, cols=7, shared_xaxes=True,  shared_yaxes=True, vertical_spacing=0,  horizontal_spacing=0)
    xTrain0Img: torch.Tensor = xTrain[0].reshape((PIC_H, PIC_W))
    plotly.express.imshow(img=xTrain0Img).show()
    xTrain0ImgCells: torch.Tensor = xTrain0Img.reshape((4,7, 4, 7))  #原本是: (7,4,7,4)
    for h in range(7):
        for w in range(7):
            print(f"h,w:{h},{w}")
            fig.add_trace(trace=plotly.express.imshow(xTrain0ImgCells[:, h,  :, w]).data[0], col=h + 1, row=w + 1)  #原本是: [h,:,w,:]
    fig.show()

其结果为: 由此图可知 (4,7, 4, 7) [:, h, :, w] 是间隔的取出而形成的4*4的小方格 

请添加图片描述

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注编程网的更多内容!    

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

plotly分割显示mnist的方法详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

plotly怎么分割显示mnist

这篇文章主要介绍了plotly怎么分割显示mnist的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇plotly怎么分割显示mnist文章都会有所收获,下面我们一起来看看吧。加载mnistimport numpy
2023-06-29

python分割列表(list)的方法示例

前言 在日常开发中,有些API接口会限制请求的元素个数,这时就需要把一个大列表分割为固定的小列表,再进行相关处理,本文搜集了几个简单的方法,分享出来供大家参考学习,下面来看看详细的介绍: 方法示例#1.分割大列表为三个元素的小列表,不够三个
2022-06-04

swing分割窗口控件JSplitPane使用方法详解

本文为大家分享了JSplitPane的使用方法,供大家参考,具体内容如下1、swing分割窗口控件JSplitPane,用来将窗口分割成两个部分。  2、分割后的窗口每个窗口只能放一个控件,想要方多个控件的话,可以在上面方一个JPane面板
2023-05-30

Java实现大文件的分割与合并的方法详解

这篇文章主要为大家详细介绍了如何利用Java语言实现大文件的分割与合并,以及分割后又再次合并操作,文中示例代码讲解详细,感兴趣的可以了解一下
2022-11-13

matplotlib显示中文字符的有效方法详解

详解matplotlib中显示中文的有效方法,需要具体代码示例在数据可视化中,matplotlib是一个非常常用的库,它提供了强大且灵活的绘图功能。然而,matplotlib默认不支持显示中文字符,这给使用者带来了不便。本文将介绍一些在m
matplotlib显示中文字符的有效方法详解
2024-01-13

C#实现文件分割和合并的示例详解

这篇文章主要为大家详细介绍了如何利用C#实现文件分割和合并的功能,文中的示例代码讲解详细,对我们学习C#有一定的帮助,感兴趣的小伙伴可以跟随小编一起了解一下
2022-12-26

zabbix php无法显示的解决方法

这篇文章给大家分享的是有关zabbix php无法显示的解决方法的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。zabbix php无法显示的解决办法:1、安装apache;2、完整安装php;3、修改apache
2023-06-15

u方法会把index.php显示的解决方法

小编给大家分享一下u方法会把index.php显示的解决方法,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!php是什么意思php是一个嵌套的缩写名称,是英文超级文本预处理语言,它的语法混合了C、Java、Perl以及php
2023-06-14

php echo不显示的解决方法

这篇文章将为大家详细讲解有关php echo不显示的解决方法,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。php echo不显示的解决办法:1、添加缓存字符;2、清除缓存;3、通过“ob_end_clea
2023-06-14

html显示乱码的解决方法

这篇文章给大家分享的是有关html显示乱码的解决方法的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。html有什么特点1、简易性:超级文本标记语言版本升级采用超集方式,从而更加灵活方便,适合初学前端开发者使用。2、
2023-06-14

PHP+MySQL+LayUI分页查询显示的方法

这篇文章主要介绍PHP+MySQL+LayUI分页查询显示的方法,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!html构建前端样式 AJAX异步请求数据使用layui.table数据表格的方法渲染。1.HTML文件<
2023-06-14

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录