我的编程空间,编程开发者的网络收藏夹
学习永远不晚

如何在pytorch中部署半精度模型

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

如何在pytorch中部署半精度模型

如何在pytorch中部署半精度模型?很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。

具体方法

在pytorch中,一般模型定义都继承torch.nn.Moudle,torch.nn.Module基类的half()方法会把所有参数转为16位浮点,所以在模型加载后,调用一下该方法即可达到模型切换的目的.接下来只需要在推断时把input的tensor切换为16位浮点即可

另外还有一个小的trick,在推理过程中模型输出的tensor自然会成为16位浮点,如果需要新创建tensor,最好调用已有tensor的new_zeros,new_full等方法而不是torch.zeros和torch.full,前者可以自动继承已有tensor的类型,这样就不需要到处增加代码判断是使用16位还是32位了,只需要针对input tensor切换.

补充:pytorch 使用amp.autocast半精度加速训练

准备工作

pytorch 1.6+

如何使用autocast?

根据官方提供的方法,

答案就是autocast + GradScaler。

1,autocast

正如前文所说,需要使用torch.cuda.amp模块中的autocast 类。使用也是非常简单的:

如何在PyTorch中使用自动混合精度?

答案:autocast + GradScaler。

1.autocast

正如前文所说,需要使用torch.cuda.amp模块中的autocast 类。使用也是非常简单的

from torch.cuda.amp import autocast as autocast# 创建model,默认是torch.FloatTensormodel = Net().cuda()optimizer = optim.SGD(model.parameters(), ...)for input, target in data:    optimizer.zero_grad()    # 前向过程(model + loss)开启 autocast    with autocast():        output = model(input)        loss = loss_fn(output, target)    # 反向传播在autocast上下文之外    loss.backward()    optimizer.step()

2.GradScaler

GradScaler就是梯度scaler模块,需要在训练最开始之前实例化一个GradScaler对象。

因此PyTorch中经典的AMP使用方式如下:

from torch.cuda.amp import autocast as autocast# 创建model,默认是torch.FloatTensormodel = Net().cuda()optimizer = optim.SGD(model.parameters(), ...)# 在训练最开始之前实例化一个GradScaler对象scaler = GradScaler()for epoch in epochs:    for input, target in data:        optimizer.zero_grad()        # 前向过程(model + loss)开启 autocast        with autocast():            output = model(input)            loss = loss_fn(output, target)        scaler.scale(loss).backward()        scaler.step(optimizer)        scaler.update()

3.nn.DataParallel

单卡训练的话上面的代码已经够了,亲测在2080ti上能减少至少1/3的显存,至于速度。。。

要是想多卡跑的话仅仅这样还不够,会发现在forward里面的每个结果都还是float32的,怎么办?

class Model(nn.Module):    def __init__(self):        super(Model, self).__init__()    def forward(self, input_data_c1):     with autocast():      # code     return

pytorch的优点

1.PyTorch是相当简洁且高效快速的框架;2.设计追求最少的封装;3.设计符合人类思维,它让用户尽可能地专注于实现自己的想法;4.与google的Tensorflow类似,FAIR的支持足以确保PyTorch获得持续的开发更新;5.PyTorch作者亲自维护的论坛 供用户交流和求教问题6.入门简单

看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注编程网行业资讯频道,感谢您对编程网的支持。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

如何在pytorch中部署半精度模型

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

如何在pytorch中部署半精度模型

如何在pytorch中部署半精度模型?很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。具体方法在pytorch中,一般模型定义都继承torch.nn.Moudle,
2023-06-15

PyTorch中如何进行模型的部署和推理

在PyTorch中进行模型的部署和推理通常有以下几个步骤:加载已经训练好的模型:import torchimport torch.nn as nn# 加载已经训练好的模型model = torch.load('model.pt
PyTorch中如何进行模型的部署和推理
2024-03-05

如何在Keras中进行模型的部署

在Keras中进行模型部署通常有两种方式:使用Keras自带的方法来保存和加载模型,或者将模型转换为TensorFlow的SavedModel格式进行部署。使用Keras自带的方法保存和加载模型:# 保存模型model.save("my_
如何在Keras中进行模型的部署
2024-03-14

如何在TensorFlow中进行模型的部署和推理

在TensorFlow中进行模型的部署和推理可以通过以下步骤实现:训练模型:首先,您需要使用TensorFlow训练您的模型。在训练过程中,您可以使用TensorFlow的各种API和工具来定义模型、加载数据、执行训练循环等。导出模型:在模
如何在TensorFlow中进行模型的部署和推理
2024-03-01

如何在PyTorch中进行模型的微调

在PyTorch中进行模型微调的步骤如下:加载预训练模型:首先,你需要加载一个预训练的模型。PyTorch提供了许多常见的预训练模型,如ResNet、VGG等。你可以使用torchvision.models中的模型来加载预训练模型。impo
如何在PyTorch中进行模型的微调
2024-03-14

如何在PyTorch中进行模型的可视化

在PyTorch中进行模型的可视化通常使用第三方库如torchviz或tensorboard。以下是如何使用这两个库进行模型可视化的方法:使用torchviz库:首先需要安装torchviz库:pip install torchviz然后
如何在PyTorch中进行模型的可视化
2024-03-14

如何在TensorFlow中进行模型的部署到移动设备上

在TensorFlow中将模型部署到移动设备上通常有两种方法:TensorFlow Lite:TensorFlow Lite是一个用于在移动设备和嵌入式设备上运行机器学习模型的轻量级解决方案。您可以使用TensorFlow Lite将训练好
如何在TensorFlow中进行模型的部署到移动设备上
2024-03-01

如何在PyTorch中进行模型的集成学习

在PyTorch中进行模型的集成学习可以通过以下步骤实现:定义多个不同的神经网络模型:首先,定义多个不同的神经网络模型,可以是不同结构的模型,也可以是同一结构的模型使用不同的超参数进行训练。训练每个模型:对每个定义的神经网络模型进行独立的
如何在PyTorch中进行模型的集成学习
2024-03-06

如何在Pytorch中操作统计模型参数量

本篇文章为大家展示了如何在Pytorch中操作统计模型参数量,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。param.numel()返回param中元素的数量统计模型参数量num_params =
2023-06-15

如何在Pytorch中实现一个模型迁移功能

这篇文章给大家介绍如何在Pytorch中实现一个模型迁移功能,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。1. 利用resnet18做迁移学习import torchfrom torchvision import mo
2023-06-06

如何在PyTorch中创建一个神经网络模型

在PyTorch中创建神经网络模型通常需要定义一个继承自torch.nn.Module类的自定义类。下面是一个简单的示例:import torchimport torch.nn as nnclass SimpleNN(nn.Module
如何在PyTorch中创建一个神经网络模型
2024-03-05

在PyTorch中如何进行模型权重的正则化

在PyTorch中,可以使用torch.nn.Module类中的parameters()方法来获取模型的权重参数,然后使用正则化方法来对这些参数进行约束。下面是一个示例代码,演示了如何对模型的权重进行L2正则化:import torch
在PyTorch中如何进行模型权重的正则化
2024-03-05

在pytorch中复制模型时出现问题如何解决

在pytorch中复制模型时出现问题如何解决?针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。直接使用model2=model1会出现当更新model2时,model1的权重也
2023-06-06

如何在Linux中安装部署模块化系统监控工具Hegemon

如何在Linux中安装部署模块化系统监控工具Hegemon,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。Linux系统中有top,htop,atop等命令用来监控系统,它们提供
2023-06-28

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录