我的编程空间,编程开发者的网络收藏夹
学习永远不晚

C++20 特性 协程 Coroutines(1)

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

C++20 特性 协程 Coroutines(1)

我们先来介绍一下什么是协程.

一、协程简单介绍

协程和普通的函数 其实差不多. 不过这个 "函数" 能够暂停自己, 也能够被别人恢复.

普通的函数调用, 函数运行完返回一个值, 结束.

协程可以运行到一半, 返回一个值, 并且保留上下文. 下次恢复的时候还可以接着运行, 上下文 (比如局部变量) 都还在.

这就是最大的区别.

二、协程的好处

考虑多任务协作的场景. 如果是线程的并发, 那么大家需要抢 CPU 用, 还需要条件变量/信号量或者上锁等技术, 来确保正确的线程正在工作.

如果在协程中, 大家就可以主动暂停自己, 多个任务互相协作. 这样可能就比大家一起抢 CPU 更高效一点, 因为你能够控制哪个协程用上 CPU.

一个例子:

生产者/消费者模型: 生产者生产完毕后, 暂停自己, 把控制流还给消费者. 消费者消费完毕后, resume 生产者, 生产者继续生产. 这样循环往复.

异步调用: 比如你要请求网络上的一个资源.

  • 发请求给协程
  • 协程收到请求以后, 发出请求. 协程暂停自己, 把控制权还回去.
  • 你继续做些别的事情. 比如发出下一个请求. 或者做一些计算.
  • 恢复这个协程, 拿到资源 (可能还要再等一等)

理想状态下, 4 可以直接用上资源, 这样就完全不浪费时间.

如果是同步的话:

  • 发请求给函数.
  • 函数收到请求以后, 等资源.
  • 等了很久, 资源到了, 把控制权还回去.

明显需要多等待一会儿. 如果需要发送上百个请求, 那显然是第一种异步调用快一点. (等待的过程中可以发送新的请求)

如果没有协程的话, 解决方案之一是使用多线程. 像这样:

  • 发请求给函数.
  • 函数在另外的线程等, 不阻塞你的线程.
  • 你继续做些别的事情. 比如发出下一个请求. 或者做一些计算.
  • 等到终于等到了, 他再想一些办法通知你.

然后通知的办法就有 promise 和回调这些办法.

三、协程得用法

我们照着 C++20 标准来看看怎么用协程. 用 g++, 版本 10.2 进行测试.

目前 C++20 标准只加入了协程的基本功能, 还没有直接能上手用的类. GCC 说会尽量与 clang MSVC 保持协程的 ABI 兼容, 同时和 libc++ 等保持库的兼容. 所以本文可能也适用于它们.

协程和主程序之间通过 promise 进行通信. promise 可以理解成一个管道, 协程和其调用方都能看得到.

以前的 std::async std::future 也是基于一种特殊的 promise 进行通信的, 就是 std::promise. 如果要使用协程, 则需要自己实现一个全新的 promise 类, 原理上是类似的.

四、协程三个关键字

这次引入了三个新的关键字 co_await, co_yield, co_return . 从效果上看: co_await 是用来暂停和恢复协程的, 并且真正用来求值.

co_yield 是用来暂停协程并且往绑定的 promise 里面 yield 一个值.

co_return 是往绑定的 promise 里面放入一个值.

这里我们先谈谈 co_yield co_return. 谈完这俩再谈谈 co_await 就比较简单.

五、协程工作原理

所以最重要的两个问题就是

  • 协程如何实现信息传递 (使用自己实现的 promise)
  • 如何恢复一个已经暂停了的协程 (使用 std::coroutine_handle)

上面说了, 一个协程会有一个与之相伴的 promise , 用作信息传递. 一个协程, 效果等同于


{
promise-type promise(promise-constructor-arguments); 
try {
    co_await promise.initial_suspend(); // 创建之后 第一次暂停
    function-body // 函数体
} catch ( ... ) {
    if (!initial-await-resume-called)
    throw; 
    promise.unhandled_exception(); 
}

final-suspend:
co_await promise.final_suspend(); // 最后一次暂停
}

细节, 包括 promise 初始化的参数, 异常的处理等等, 我们留到之后的文章再处理. 所以我们简化成


{
promise-type promise; 

co_await promise.initial_suspend(); 

function-body // 函数体

final-suspend:
co_await promise.final_suspend(); 
}


对于暂停, co_await 那个地方就可以暂停并且交出控制权. 下篇文章我们会详细介绍 co_await.

对于唤醒, 则需要拿到一个 std::coroutine_handle, 对它调用 resume() .

1、co_yield

co_yield 123 做的事情实际上相当于调用了 co_await promise.yield_value(123) . 这个 promise 里面存放了 123 以后, 会告诉 co_await 自己要暂停. 于是 co_await 就在这里停下来, 把控制流还回去.

来看一个标准中的实现范例.


#include <iostream>
#include <coroutine>

struct generator
{
    struct promise_type;
    using handle = std::coroutine_handle<promise_type>;
    struct promise_type
    {
        int current_value;
        static auto get_return_object_on_allocation_failure() { return generator{nullptr}; }
        auto get_return_object() { return generator{handle::from_promise(*this)}; }
        auto initial_suspend() { return std::suspend_always{}; }
        auto final_suspend() { return std::suspend_always{}; }
        void unhandled_exception() { std::terminate(); }
        void return_void() {}
        auto yield_value(int value)
        {
            current_value = value;
            return std::suspend_always{}; // 这是一个 awaiter 结构, 见第二篇文章
        }
    };
    bool move_next() { return coro ? (coro.resume(), !coro.done()) : false; }
    int current_value() { return coro.promise().current_value; }
    generator(generator const &) = delete;
    generator(generator &&rhs) : coro(rhs.coro) { rhs.coro = nullptr; }
    ~generator() {  if (coro) coro.destroy();   }

private:
    generator(handle h) : coro(h) {}
    handle coro;
};

generator f()
{
    co_yield 1;
    co_yield 2;
}

int main()
{
    auto g = f(); // 停在 initial_suspend 那里
    while (g.move_next()) // 每次调用就停在下一个 co_await 那里
        std::cout << g.current_value() << std::endl;
}

generator 是一个包装类, 持有一个 std::coroutine_handle. 同时它规定了 coroutine_handle 本协程的 promise 是什么样的. (通过 generator::promise_type告知)

coroutine_handle是协程的流程管理者, 由它来管理这个 promise. 而 generator 则是 coroutine_handle 的管理者.

f() 是一个协程. 可以展开成这样的伪代码


{
generator g(handle coro); // 建立句柄和包装类

co_await promise.initial_suspend(); // 创建之后停在这里, 等待被恢复

co_await promise.yield_value(1); // 第一次恢复后就会停在这里
co_await promise.yield_value(2); // 第二次恢复后就会停在这里

final-suspend:
co_await promise.final_suspend(); // 第三次恢复后就会停在这里
}

按照这里的写法, 每一次 promise.yield_value() 之后都会返回一个结构体给 co_await, 告诉 co_await 自己在这里暂停.

然后在主函数处调用 g.move_next() , 进而恢复了协程之后, 协程就会从刚刚暂停的 co_await 那一行恢复运行.

对了, 过了最后的 final_suspend() 以后, 这个协程就会析构掉. 再次恢复协程就会导致 segmentation fault.

g++10 已经提供了协程的支持, 只需要加上 -std=c++20 -fcoroutines -fno-exceptions 即可. 上面这段代码可以在这里编译:

2、co_return

co_return 相当于调用了 promise.return_value() 或者 promise.return_void() 然后跳到 final-suspend 标签那里. 也就是说这个这个协程结束了, 再也无法被恢复了.

而对比 co_yield 调用的是 co_await promise.yield_value(). 他们的区别就是 co_yeild 完了协程继续等着下一次被恢复 , co_return co_return完了协程就结束了. (为了让协程也能像普通函数一样返回)

我们来看一段代码.


#include <iostream>
#include <future>
#include <coroutine>

using namespace std;

struct lazy
{
    struct promise_type;
    using handle = std::coroutine_handle<promise_type>;
    struct promise_type
    {
        int _return_value;
        static auto get_return_object_on_allocation_failure() { return lazy{nullptr}; }
        auto get_return_object() { return lazy{handle::from_promise(*this)}; }
        auto initial_suspend() { return std::suspend_always{}; }
        auto final_suspend() { return std::suspend_always{}; }
        void unhandled_exception() { std::terminate(); }
        void return_value(int value) { _return_value = value; }
    };
    bool calculate()
    {
        if (calculated)
            return true;
        if (!coro)
            return false;
        coro.resume();
        if (coro.done())
            calculated = true;
        return calculated;
    }
    int get() { return coro.promise()._return_value; }
    lazy(lazy const &) = delete;
    lazy(lazy &&rhs) : coro(rhs.coro) { rhs.coro = nullptr; }
    ~lazy() {  if (coro) coro.destroy(); }

private:
    lazy(handle h) : coro(h) {}
    handle coro;
    bool calculated{false};
};


lazy f(int n = 0)
{
    co_return n + 1;
}

int main()
{
    auto g = f();
    g.calculate(); // 这时才从 initial_suspend 之中恢复, 所以就叫 lazy 了
    cout << g.get();
}

由于这个协程只能被恢复一次, 所以我稍稍修改了一下 lazy 的实现. 可以参考这里:

下一篇C++20 新特性 协程 Coroutines(2)

到此这篇关于C++20 特性 协程 Coroutines的文章就介绍到这了,更多相关C++20 协程 Coroutines内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

C++20 特性 协程 Coroutines(1)

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

C++11、C++14、C++17、C++20常用新特性

本文主要介绍了C++11、C++14、C++17、C++20常用新特性,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2023-03-10

C++通信新特性协程详细介绍

这篇文章主要给大家分享得是C++的特性协程Coroutine,下面文章内容我们将来具体介绍什么是协程,协程得好处等知识点,需要的朋友可以参考一下
2022-11-13

python 多线程特性1

多线程编程:          1. 用来加速程序的执行速度(并行);         2.用来模拟生活中随机现象,比如:生产-消费问题,排队-等待问题等等;下面的一个实例使用的就是: 1. 加速程序的执行速度(并行): //1. 这个是一
2023-01-31

C++11、C++14、C++17、C++20常用新特性有哪些

这篇文章主要介绍“C++11、C++14、C++17、C++20常用新特性有哪些”,在日常操作中,相信很多人在C++11、C++14、C++17、C++20常用新特性有哪些问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对
2023-07-05

从使用角度解读c++20协程示例

类比线程,线程是个函数,把这个函数交给创建线程的api,然后这个函数就变成线程了,这个函数本身没有任何特殊的地方,就是普通函数,这篇文章主要介绍了从使用角度解读c++20协程示例,需要的朋友可以参考下
2023-01-05

PHP高级特性:如何掌握协程?

php 协程是一种实现并发编程的轻量级技术,借助生成器函数在 php 中实现。协程可在异步 i/o、爬虫和并行计算等场景下使用。实战案例中,协程用于处理海量数据并行计算,大幅提高效率。掌握协程可显著提升代码并行性和性能,为开发者提供高效并发
PHP高级特性:如何掌握协程?
2024-05-14

Linux协程的轻量级特性分析

Linux协程是一种轻量级的用户态线程,相比于传统的操作系统线程,具有以下几点特性:轻量级:Linux协程是在用户态实现的,不需要操作系统的内核支持,因此相比于传统线程更加轻量级。它们不需要上下文切换和内核态和用户态之间的切换,减少了系统开
Linux协程的轻量级特性分析
2024-08-07

PHP 函数不断增强的协程特性

php 协程特性显着增强,提供灵活性、性能和可扩展性。主要好处包括:并行性:允许多任务同时执行。高效性:轻量级,避免性能损失。可扩展性:易于扩展到多核系统。php 中的协程函数包括 fiber::new()、fiber::start()、f
PHP 函数不断增强的协程特性
2024-05-03

Golang中协程与线程的特性和差异分析

Golang中协程和线程的特点与区别分析一. 引言Golang是一门现代化的编程语言,以其简洁、高效和并发性而闻名。在Golang中,协程和线程是实现并发编程的两种主要方式。本文将分析协程和线程的特点与区别,并提供具体的代码示例。二.
Golang中协程与线程的特性和差异分析
2024-01-24

PHP协程客户端v0.1 beta版本有哪些新特性

这篇文章主要讲解了“PHP协程客户端v0.1 beta版本有哪些新特性”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“PHP协程客户端v0.1 beta版本有哪些新特性”吧!介绍dtm/dtm
2023-06-29

C#网络编程中常用特性有哪些

这篇文章给大家分享的是有关C#网络编程中常用特性有哪些的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。特性一:委托委托是C#语言中特有的概念,相当于C/C++中的函数指针,与C/C++中函数指针的不同之处是:委托是
2023-06-29

C++ 函数的函数式编程特性有哪些?

c++++ 支持函数式编程特性,包括:纯函数:使用 const 修饰符声明,不修改输入或依赖外部状态。不可变性:使用 const 关键字声明变量,无法修改其值。惰性求值:使用 std::lazy 函数创建惰性值,延迟计算表达式。递归:函数调
C++ 函数的函数式编程特性有哪些?
2024-04-11

C++ 内存管理如何优化特定应用程序的性能?

c++++ 内存管理优化可提升应用程序性能,涉及以下优化策略:减少分配和释放,使用缓存和智能指针;选择合适分配器,例如 std::malloc 或自定义分配器;优化布局,使用 alignas 关键字;实战案例:图像处理应用程序可使用 std
C++ 内存管理如何优化特定应用程序的性能?
2024-05-24

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录