我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Pytorch nn.Unfold() 与 nn.Fold()图码详解(最新推荐)

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Pytorch nn.Unfold() 与 nn.Fold()图码详解(最新推荐)

Unfold()与Fold()的用途

Unfold()Fold()一般成对出现。常用用途有:

  • 代替卷积计算,Unfold()Fold()不互逆(参数不一样)(卷积本来就不可逆)
  • 图片patch化,Unfold()Fold()互逆(参数一样,且滑动窗不重叠)

nn.Unfold()

Extracts sliding local blocks from a batched input tensor.
在各滑动窗中按行展开(行向量化),然后转置成列向量, im2col 的批量形式

input : (N, C, ∗)
output : (N, C × ∏(kernel_size), L)

# 滑动窗口有重叠
unfold = nn.Unfold(kernel_size=(2, 3))
input = torch.randn(2, 5, 3, 4)
print("input: \n", input)
output = unfold(input)
# each patch contains 30 values (2x3=6 vectors, each of 5 channels)
# 4 blocks (2x3 kernels) in total in the 3x4 input
# output.size()  # torch.Size([2, 30, 4])
print("output: \n", output)
fold = nn.Fold((3,4),(2,3))
fold_output = fold(output)
print("fold_output: \n", fold_output)

输出为:

input:
tensor([[[[ 0.4198, 1.0535, 0.1152, 0.3510],
[ 1.1664, 0.3376, 1.2207, 0.3575],
[-0.2174, -1.2490, 0.3432, 0.3388]],

[[-1.4956, 0.9746, -0.5145, 0.1722],
[ 1.7041, 0.9645, -0.6937, -1.9037],
[-0.1961, -0.3345, 0.3565, -1.2329]],

[[-0.9843, -0.8089, 1.8712, -0.2860],
[ 0.0960, -1.7501, -0.1226, 0.9383],
[-0.1675, 1.1498, -0.4958, -1.2953]],

[[-1.2368, 0.5667, 1.4166, -2.2567],
[ 0.9414, 0.8189, 1.5604, 0.1422],
[-1.6414, -1.5594, 0.6718, 1.2319]],

[[-0.4093, 0.6691, 1.4003, 0.7444],
[-0.2858, -0.4375, -1.1301, 0.7377],
[-0.0956, -0.1844, 0.7697, -0.3077]]],


[[[ 0.4264, -0.0700, -1.5600, -0.0491],
[ 1.5027, 3.1625, 0.6080, -1.8794],
[-0.3148, 0.6377, -0.7242, 0.1692]],

[[ 0.2757, -0.5403, 0.7748, -1.1795],
[ 0.1504, -0.4671, 0.9355, 1.3050],
[-0.4920, -0.8581, 0.0559, -0.0446]],

[[ 2.1627, 0.6758, -0.0968, 1.3401],
[-0.1105, 0.8299, -0.3827, -1.0687],
[-0.2234, -1.0423, 1.2436, -0.6514]],

[[ 0.8085, -0.4159, 0.2022, 0.5747],
[-0.1265, 0.2828, -1.3530, 0.2831],
[-0.1571, 0.9005, 0.4556, -1.4360]],

[[-1.2417, 0.1829, 0.3825, -0.8555],
[-2.0170, 0.7537, 2.3406, 0.5866],
[-1.1704, -1.8986, -0.7958, 0.2652]]]])
output:
tensor([[[ 0.4198, 1.0535, 1.1664, 0.3376],
[ 1.0535, 0.1152, 0.3376, 1.2207],
[ 0.1152, 0.3510, 1.2207, 0.3575],
[ 1.1664, 0.3376, -0.2174, -1.2490],
[ 0.3376, 1.2207, -1.2490, 0.3432],
[ 1.2207, 0.3575, 0.3432, 0.3388],
[-1.4956, 0.9746, 1.7041, 0.9645],
[ 0.9746, -0.5145, 0.9645, -0.6937],
[-0.5145, 0.1722, -0.6937, -1.9037],
[ 1.7041, 0.9645, -0.1961, -0.3345],
[ 0.9645, -0.6937, -0.3345, 0.3565],
[-0.6937, -1.9037, 0.3565, -1.2329],
[-0.9843, -0.8089, 0.0960, -1.7501],
[-0.8089, 1.8712, -1.7501, -0.1226],
[ 1.8712, -0.2860, -0.1226, 0.9383],
[ 0.0960, -1.7501, -0.1675, 1.1498],
[-1.7501, -0.1226, 1.1498, -0.4958],
[-0.1226, 0.9383, -0.4958, -1.2953],
[-1.2368, 0.5667, 0.9414, 0.8189],
[ 0.5667, 1.4166, 0.8189, 1.5604],
[ 1.4166, -2.2567, 1.5604, 0.1422],
[ 0.9414, 0.8189, -1.6414, -1.5594],
[ 0.8189, 1.5604, -1.5594, 0.6718],
[ 1.5604, 0.1422, 0.6718, 1.2319],
[-0.4093, 0.6691, -0.2858, -0.4375],
[ 0.6691, 1.4003, -0.4375, -1.1301],
[ 1.4003, 0.7444, -1.1301, 0.7377],
[-0.2858, -0.4375, -0.0956, -0.1844],
[-0.4375, -1.1301, -0.1844, 0.7697],
[-1.1301, 0.7377, 0.7697, -0.3077]],

[[ 0.4264, -0.0700, 1.5027, 3.1625],
[-0.0700, -1.5600, 3.1625, 0.6080],
[-1.5600, -0.0491, 0.6080, -1.8794],
[ 1.5027, 3.1625, -0.3148, 0.6377],
[ 3.1625, 0.6080, 0.6377, -0.7242],
[ 0.6080, -1.8794, -0.7242, 0.1692],
[ 0.2757, -0.5403, 0.1504, -0.4671],
[-0.5403, 0.7748, -0.4671, 0.9355],
[ 0.7748, -1.1795, 0.9355, 1.3050],
[ 0.1504, -0.4671, -0.4920, -0.8581],
[-0.4671, 0.9355, -0.8581, 0.0559],
[ 0.9355, 1.3050, 0.0559, -0.0446],
[ 2.1627, 0.6758, -0.1105, 0.8299],
[ 0.6758, -0.0968, 0.8299, -0.3827],
[-0.0968, 1.3401, -0.3827, -1.0687],
[-0.1105, 0.8299, -0.2234, -1.0423],
[ 0.8299, -0.3827, -1.0423, 1.2436],
[-0.3827, -1.0687, 1.2436, -0.6514],
[ 0.8085, -0.4159, -0.1265, 0.2828],
[-0.4159, 0.2022, 0.2828, -1.3530],
[ 0.2022, 0.5747, -1.3530, 0.2831],
[-0.1265, 0.2828, -0.1571, 0.9005],
[ 0.2828, -1.3530, 0.9005, 0.4556],
[-1.3530, 0.2831, 0.4556, -1.4360],
[-1.2417, 0.1829, -2.0170, 0.7537],
[ 0.1829, 0.3825, 0.7537, 2.3406],
[ 0.3825, -0.8555, 2.3406, 0.5866],
[-2.0170, 0.7537, -1.1704, -1.8986],
[ 0.7537, 2.3406, -1.8986, -0.7958],
[ 2.3406, 0.5866, -0.7958, 0.2652]]])
fold_output:
tensor([[[[ 0.4198, 2.1070, 0.2304, 0.3510],
[ 2.3328, 1.3502, 4.8828, 0.7150],
[-0.2174, -2.4979, 0.6865, 0.3388]],

[[-1.4956, 1.9493, -1.0290, 0.1722],
[ 3.4083, 3.8582, -2.7747, -3.8074],
[-0.1961, -0.6690, 0.7129, -1.2329]],

[[-0.9843, -1.6178, 3.7424, -0.2860],
[ 0.1920, -7.0003, -0.4904, 1.8766],
[-0.1675, 2.2995, -0.9917, -1.2953]],

[[-1.2368, 1.1334, 2.8331, -2.2567],
[ 1.8829, 3.2758, 6.2418, 0.2843],
[-1.6414, -3.1189, 1.3435, 1.2319]],

[[-0.4093, 1.3382, 2.8006, 0.7444],
[-0.5717, -1.7500, -4.5204, 1.4754],
[-0.0956, -0.3688, 1.5395, -0.3077]]],


[[[ 0.4264, -0.1399, -3.1201, -0.0491],
[ 3.0053, 12.6500, 2.4319, -3.7589],
[-0.3148, 1.2753, -1.4484, 0.1692]],

[[ 0.2757, -1.0806, 1.5497, -1.1795],
[ 0.3007, -1.8684, 3.7421, 2.6100],
[-0.4920, -1.7162, 0.1119, -0.0446]],

[[ 2.1627, 1.3515, -0.1936, 1.3401],
[-0.2210, 3.3198, -1.5307, -2.1373],
[-0.2234, -2.0846, 2.4872, -0.6514]],

[[ 0.8085, -0.8318, 0.4044, 0.5747],
[-0.2529, 1.1310, -5.4121, 0.5662],
[-0.1571, 1.8010, 0.9112, -1.4360]],

[[-1.2417, 0.3659, 0.7650, -0.8555],
[-4.0339, 3.0146, 9.3626, 1.1733],
[-1.1704, -3.7972, -1.5917, 0.2652]]]])

Unfold()与Fold() 变化模式图解

以上面代码输出为例,其实是以如下的格式对原数据进行组织排列的:
在各滑动窗中按行展开(行向量化),然后转置成列向量, 是im2col的批量形式。

在这里插入图片描述

在这里插入图片描述

然后,对Unfold()的结果以相同参数运用Fold()后(Fold()的讲解在下面,这里先给出结果),结果如下:

在这里插入图片描述

nn.Fold()

nn.Fold() 是 nn.Unfold() 函数的逆操作。 (参数相同、滑动窗口没有重叠的情况下,可以完全恢复【真互逆】。滑动窗口有重叠情况下不能恢复到Unfold的输入)

需要注意的是,如果滑动窗口有重叠,那么重叠部分相加【倍数关系】。同时,如果原来的图像不够划分的话就会舍去。在恢复时就会以 0 填充。

单通道 滑动窗口无重叠

# 单通道  滑动窗口无重叠
import torch.nn as nn
import torch
batches_img = torch.rand(1,1,6,6)
print("batches_img: ",batches_img)
unfold = nn.Unfold(kernel_size=(3,3),stride=3)
patche_img = unfold(batches_img)
print("patche_img.shape: ",patche_img.shape)
print(patche_img)
fold = torch.nn.Fold(output_size=(6, 6), kernel_size=(3, 3), stride=3)
inputs_restore = fold(patche_img)
print("inputs_restore:", inputs_restore)

输出:

batches_img: tensor([[[[0.0174, 0.3919, 0.0073, 0.4660, 0.6537, 0.0584],
[0.9763, 0.9982, 0.6250, 0.1332, 0.2123, 0.9500],
[0.5482, 0.4291, 0.9430, 0.6837, 0.6975, 0.1992],
[0.5275, 0.6800, 0.0490, 0.0350, 0.8571, 0.2449],
[0.3719, 0.7484, 0.7677, 0.4164, 0.2151, 0.8875],
[0.0784, 0.3839, 0.7567, 0.4217, 0.3208, 0.3025]]]])
patche_img.shape: torch.Size([1, 9, 4])
tensor([[[0.0174, 0.4660, 0.5275, 0.0350],
[0.3919, 0.6537, 0.6800, 0.8571],
[0.0073, 0.0584, 0.0490, 0.2449],
[0.9763, 0.1332, 0.3719, 0.4164],
[0.9982, 0.2123, 0.7484, 0.2151],
[0.6250, 0.9500, 0.7677, 0.8875],
[0.5482, 0.6837, 0.0784, 0.4217],
[0.4291, 0.6975, 0.3839, 0.3208],
[0.9430, 0.1992, 0.7567, 0.3025]]])
inputs_restore: tensor([[[[0.0174, 0.3919, 0.0073, 0.4660, 0.6537, 0.0584],
[0.9763, 0.9982, 0.6250, 0.1332, 0.2123, 0.9500],
[0.5482, 0.4291, 0.9430, 0.6837, 0.6975, 0.1992],
[0.5275, 0.6800, 0.0490, 0.0350, 0.8571, 0.2449],
[0.3719, 0.7484, 0.7677, 0.4164, 0.2151, 0.8875],
[0.0784, 0.3839, 0.7567, 0.4217, 0.3208, 0.3025]]]])

模拟图片数据(b,3,9,9),通道数 C 为3,滑动窗口无重叠。

相较于上面的代码,变化仅此

# 模拟图片数据(b,3,9,9),通道数 C 为3,滑动窗口无重叠。 相较于上面的代码,变化仅此
import torch.nn as nn
import torch
batches_img = torch.rand(1,3,6,6)
print("batches_img: ",batches_img)
unfold = nn.Unfold(kernel_size=(3,3),stride=3)
patche_img = unfold(batches_img)
print("patche_img.shape: ",patche_img.shape)
print(patche_img)
fold = torch.nn.Fold(output_size=(6, 6), kernel_size=(3, 3), stride=3)
inputs_restore = fold(patche_img)
print("inputs_restore:", inputs_restore)

输出为:

batches_img: tensor([[[[0.6072, 0.9496, 0.4149, 0.1085, 0.6808, 0.3949],
[0.9770, 0.4831, 0.3964, 0.6597, 0.1749, 0.7326],
[0.4379, 0.0159, 0.2946, 0.4129, 0.1445, 0.5479],
[0.1664, 0.6725, 0.5104, 0.4171, 0.6656, 0.3146],
[0.5126, 0.2331, 0.8167, 0.2695, 0.6420, 0.8591],
[0.2282, 0.6300, 0.9205, 0.6741, 0.6085, 0.7866]],

[[0.7943, 0.8348, 0.5379, 0.1951, 0.2629, 0.7281],
[0.5726, 0.4912, 0.5636, 0.7816, 0.9746, 0.3764],
[0.5440, 0.3434, 0.5914, 0.5925, 0.9556, 0.0455],
[0.0810, 0.0730, 0.2580, 0.0785, 0.2483, 0.3810],
[0.4182, 0.7024, 0.4904, 0.6935, 0.1789, 0.1015],
[0.2571, 0.9138, 0.1987, 0.6266, 0.0760, 0.4618]],

[[0.3554, 0.2476, 0.3415, 0.5014, 0.1018, 0.3563],
[0.2180, 0.5690, 0.9975, 0.8152, 0.5812, 0.2704],
[0.5717, 0.9419, 0.4398, 0.5708, 0.2666, 0.3507],
[0.3868, 0.6889, 0.0326, 0.7873, 0.7444, 0.8057],
[0.1440, 0.9667, 0.2522, 0.9718, 0.6078, 0.2911],
[0.1442, 0.3061, 0.4116, 0.4190, 0.2343, 0.2608]]]])
patche_img.shape: torch.Size([1, 27, 4])
tensor([[[0.6072, 0.1085, 0.1664, 0.4171],
[0.9496, 0.6808, 0.6725, 0.6656],
[0.4149, 0.3949, 0.5104, 0.3146],
[0.9770, 0.6597, 0.5126, 0.2695],
[0.4831, 0.1749, 0.2331, 0.6420],
[0.3964, 0.7326, 0.8167, 0.8591],
[0.4379, 0.4129, 0.2282, 0.6741],
[0.0159, 0.1445, 0.6300, 0.6085],
[0.2946, 0.5479, 0.9205, 0.7866],
[0.7943, 0.1951, 0.0810, 0.0785],
[0.8348, 0.2629, 0.0730, 0.2483],
[0.5379, 0.7281, 0.2580, 0.3810],
[0.5726, 0.7816, 0.4182, 0.6935],
[0.4912, 0.9746, 0.7024, 0.1789],
[0.5636, 0.3764, 0.4904, 0.1015],
[0.5440, 0.5925, 0.2571, 0.6266],
[0.3434, 0.9556, 0.9138, 0.0760],
[0.5914, 0.0455, 0.1987, 0.4618],
[0.3554, 0.5014, 0.3868, 0.7873],
[0.2476, 0.1018, 0.6889, 0.7444],
[0.3415, 0.3563, 0.0326, 0.8057],
[0.2180, 0.8152, 0.1440, 0.9718],
[0.5690, 0.5812, 0.9667, 0.6078],
[0.9975, 0.2704, 0.2522, 0.2911],
[0.5717, 0.5708, 0.1442, 0.4190],
[0.9419, 0.2666, 0.3061, 0.2343],
[0.4398, 0.3507, 0.4116, 0.2608]]])
inputs_restore: tensor([[[[0.6072, 0.9496, 0.4149, 0.1085, 0.6808, 0.3949],
[0.9770, 0.4831, 0.3964, 0.6597, 0.1749, 0.7326],
[0.4379, 0.0159, 0.2946, 0.4129, 0.1445, 0.5479],
[0.1664, 0.6725, 0.5104, 0.4171, 0.6656, 0.3146],
[0.5126, 0.2331, 0.8167, 0.2695, 0.6420, 0.8591],
[0.2282, 0.6300, 0.9205, 0.6741, 0.6085, 0.7866]],

[[0.7943, 0.8348, 0.5379, 0.1951, 0.2629, 0.7281],
[0.5726, 0.4912, 0.5636, 0.7816, 0.9746, 0.3764],
[0.5440, 0.3434, 0.5914, 0.5925, 0.9556, 0.0455],
[0.0810, 0.0730, 0.2580, 0.0785, 0.2483, 0.3810],
[0.4182, 0.7024, 0.4904, 0.6935, 0.1789, 0.1015],
[0.2571, 0.9138, 0.1987, 0.6266, 0.0760, 0.4618]],

[[0.3554, 0.2476, 0.3415, 0.5014, 0.1018, 0.3563],
[0.2180, 0.5690, 0.9975, 0.8152, 0.5812, 0.2704],
[0.5717, 0.9419, 0.4398, 0.5708, 0.2666, 0.3507],
[0.3868, 0.6889, 0.0326, 0.7873, 0.7444, 0.8057],
[0.1440, 0.9667, 0.2522, 0.9718, 0.6078, 0.2911],
[0.1442, 0.3061, 0.4116, 0.4190, 0.2343, 0.2608]]]])

单通道 滑动窗口有重叠。

kernel_size=(3,3),stride=2

# 单通道 滑动窗口有重叠。  kernel_size=(3,3),stride=2
import torch.nn as nn
import torch
batches_img = torch.rand(1,1,6,6)
print("batches_img: \n",batches_img)
unfold = nn.Unfold(kernel_size=(3,3),stride=2)
patche_img = unfold(batches_img)
print("patche_img.shape: ",patche_img.shape)
print(patche_img)
fold = torch.nn.Fold(output_size=(6, 6), kernel_size=(3, 3), stride=2)
inputs_restore = fold(patche_img)
print("inputs_restore: \n", inputs_restore)

输出为:

batches_img:
tensor([[[[0.4171, 0.0129, 0.2183, 0.0610, 0.5242, 0.9530],
[0.7112, 0.7892, 0.2548, 0.4604, 0.7200, 0.0294],
[0.0754, 0.0451, 0.2892, 0.6765, 0.8671, 0.5574],
[0.4220, 0.4499, 0.8946, 0.0149, 0.6790, 0.0719],
[0.1529, 0.2815, 0.8502, 0.5781, 0.0339, 0.9916],
[0.6900, 0.4843, 0.3190, 0.0676, 0.8558, 0.0060]]]])
patche_img.shape: torch.Size([1, 9, 4])
tensor([[[0.4171, 0.2183, 0.0754, 0.2892],
[0.0129, 0.0610, 0.0451, 0.6765],
[0.2183, 0.5242, 0.2892, 0.8671],
[0.7112, 0.2548, 0.4220, 0.8946],
[0.7892, 0.4604, 0.4499, 0.0149],
[0.2548, 0.7200, 0.8946, 0.6790],
[0.0754, 0.2892, 0.1529, 0.8502],
[0.0451, 0.6765, 0.2815, 0.5781],
[0.2892, 0.8671, 0.8502, 0.0339]]])
inputs_restore:
tensor([[[[0.4171, 0.0129, 0.4365, 0.0610, 0.5242, 0.0000],
[0.7112, 0.7892, 0.5095, 0.4604, 0.7200, 0.0000],
[0.1507, 0.0902, 1.1567, 1.3530, 1.7342, 0.0000],
[0.4220, 0.4499, 1.7892, 0.0149, 0.6790, 0.0000],
[0.1529, 0.2815, 1.7005, 0.5781, 0.0339, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]]])

# 重复累加次数最多的元素:
batches_img[0,0,2,2]*4
# 输出:tensor(1.1567)

卷积等价于:Unfold + Matrix Multiplication + Fold (或view()到卷积输出形状)

注: 使用 Unfold + Matrix Multiplication + Fold 来代替卷积时,Fold 中的 kernel size 需要为 (1,1)

inp = torch.randn(1, 3, 10, 12)
w = torch.randn(2, 3, 4, 5)
inp_unf = torch.nn.functional.unfold(inp, (4, 5))
out_unf = inp_unf.transpose(1, 2).matmul(w.view(w.size(0), -1).t()).transpose(1, 2)
out = torch.nn.functional.fold(out_unf, (7, 8), (1, 1))
# or equivalently (and avoiding a copy),
# out = out_unf.view(1, 2, 7, 8)
(torch.nn.functional.conv2d(inp, w) - out).abs().max()  # tensor(1.9073e-06)

到此这篇关于Pytorch nn.Unfold()与nn.Fold()图码详解的文章就介绍到这了,更多相关Pytorchnn.Unfold()与nn.Fold()图码内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Pytorch nn.Unfold() 与 nn.Fold()图码详解(最新推荐)

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Pytorch nn.Unfold() 与 nn.Fold()图码详解(最新推荐)

这篇文章主要介绍了Pytorch nn.Unfold() 与 nn.Fold()图码详解,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
2023-05-18

vue2.x与vue3.x中自定义指令详解(最新推荐)

vue自定义指令(2.x丨3.x)可以帮助我们实现需要操作,比如防抖、节流、懒加载、输入框自动聚焦等等,使用起来非常方便,比如vue自带的v-text、v-html、v-show、v-if等等,这篇文章主要介绍了vue2.x与vue3.x中自定义指令详解,需要的朋友可以参考下
2022-12-08

Sql Prompt 10下载与安装破解图文教程(最新推荐)

sql prompt 10是一款拥有智能提示功能的SQL Server和VS插件,,特别适合开发者不大熟悉脚本时候使用,这篇文章主要介绍了Sql Prompt 10下载与安装破解图文教程,需要的朋友可以参考下
2023-03-06

Sql Prompt 10下载与安装破解图文教程(最新推荐)

目录1.下载安装2.破解2.1破解的时候,先要断网,然后再操作,按如图打开界面,点击Manage License2.2点击Activate2.3打开SQL.Prompt.Keygen.exe,将生成的注册码拷贝到输入框内,然后点击Activ
2023-03-06

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录