Tensorflow训练模型默认占满所有GPU的解决方案
短信预约 -IT技能 免费直播动态提醒
Tensorflow训练模型默认占满所有GPU问题
在使用gpu服务器训练tensorflow模型时,总是占满显存!
TensorFlow默认的是占用所有GPU
因此我们需要手动设置使用的GPU编号以及单个GPU显存占用比例
1.第一步需要在代码中开头加入
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # 按照PCI_BUS_ID顺序从0开始排列GPU设备
os.environ["CUDA_VISIBLE_DEVICES"]=‘0' # 使用0号gpu(想使用其他编号GPU,对应修改引号中的内容即可)
os.environ["CUDA_VISIBLE_DEVICES"]=‘0,1' # 使用0号GPU和1号GPU
2.第二步需要将代码中的sess = tf.Session()改为
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333) # 通过改变0.333可以改变占用显存比例
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
per_process_gpu_memory_fraction=0.333代表的含义就是每个GPU进程中使用显存的上限为该GPU总量的1/3
3.如果想要在程序运行过程中连续查看GPU信息
可以在终端使用该 指令(执行指令:watch -n 3 -d nvidia-smi # 每隔三秒输出一次)(前提是设备中有合适的NVIDIA驱动)
解决tensorflow2.2把GPU显存占满
安装了tensorflow-gpu后,运行程序默认是把GPU的内存全部占满的,有时我们不想全部占满,可以这样操作。
解决代码
import tensorflow as tf
import os
os.environ['CUDA_VISIBLE_DEVICES']="0" # 指定哪块GPU训练
config=tf.compat.v1.ConfigProto()
# 设置最大占有GPU不超过显存的80%(可选)
# config.gpu_options.per_process_gpu_memory_fraction=0.8
config.gpu_options.allow_growth = True # 设置动态分配GPU内存
sess=tf.compat.v1.Session(config=config)
如图:
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341