我的编程空间,编程开发者的网络收藏夹
学习永远不晚

分库分表的分布式主键ID生成方法有哪些

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

分库分表的分布式主键ID生成方法有哪些

本篇内容主要讲解“分库分表的分布式主键ID生成方法有哪些”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“分库分表的分布式主键ID生成方法有哪些”吧!

引入任何一种技术都是存在风险的,分库分表当然也不例外,除非库、表数据量持续增加,大到一定程度,以至于现有高可用架构已无法支撑,否则不建议大家做分库分表,因为做了数据分片后,你会发现自己踏上了一段踩坑之路,而分布式主键  ID 就是遇到的第一个坑。

不同数据节点间生成全局唯一主键是个棘手的问题,一张逻辑表 t_order 拆分成多个真实表 t_order_n,然后被分散到不同分片库  db_0、db_1... ,各真实表的自增键由于无法互相感知从而会产生重复主键,此时数据库本身的自增主键,就无法满足分库分表对主键全局唯一的要求。

db_0--    |-- t_order_0    |-- t_order_1    |-- t_order_2 db_1--    |-- t_order_0    |-- t_order_1    |-- t_order_2

尽管我们可以通过严格约束,各个分片表自增主键的 初始值 和 步长 的方式来解决 ID  重复的问题,但这样会让运维成本陡增,而且可扩展性极差,一旦要扩容分片表数量,原表数据变动比较大,所以这种方式不太可取。

步长 step = 分表张数  db_0--    |-- t_order_0  ID: 0、6、12、18...    |-- t_order_1  ID: 1、7、13、19...    |-- t_order_2  ID: 2、8、14、20... db_1--    |-- t_order_0  ID: 3、9、15、21...    |-- t_order_1  ID: 4、10、16、22...    |-- t_order_2  ID: 5、11、17、23...

目前已经有了许多第三放解决方案可以完美解决这个问题,比如基于 UUID、SNOWFLAKE算法  、segment号段,使用特定算法生成不重复键,或者直接引用主键生成服务,像美团(Leaf)和 滴滴(TinyId)等。

而sharding-jdbc  内置了两种分布式主键生成方案,UUID、SNOWFLAKE,不仅如此它还抽离出分布式主键生成器的接口,以便于开发者实现自定义的主键生成器,后续我们会在自定义的生成器中接入  滴滴(TinyId)的主键生成服务。

前边介绍过在 sharding-jdbc 中要想为某个字段自动生成主键 ID,只需要在 application.properties  文件中做如下配置:

# 主键字段 spring.shardingsphere.sharding.tables.t_order.key-generator.column=order_id # 主键ID 生成方案 spring.shardingsphere.sharding.tables.t_order.key-generator.type=UUID # 工作机器 id spring.shardingsphere.sharding.tables.t_order.key-generator.props.worker.id=123

key-generator.column 表示主键字段,key-generator.type 为主键 ID  生成方案(内置或自定义的),key-generator.props.worker.id 为机器ID,在主键生成方案设为 SNOWFLAKE 时机器ID  会参与位运算。

在使用 sharding-jdbc 分布式主键时需要注意两点:

  • 一旦 insert 插入操作的实体对象中主键字段已经赋值,那么即使配置了主键生成方案也会失效,最后SQL 执行的数据会以赋的值为准。

  • 不要给主键字段设置自增属性,否则主键ID 会以默认的 SNOWFLAKE 方式生成。比如:用 mybatis plus 的 @TableId 注解给字段  order_id 设置了自增主键,那么此时配置哪种方案,总是按雪花算法生成。

  • 下面我们从源码上分析下 sharding-jdbc 内置主键生成方案 UUID、SNOWFLAKE 是怎么实现的。

UUID

打开 UUID 类型的主键生成实现类 UUIDShardingKeyGenerator 的源码发现,它的生成规则只有 UUID.randomUUID()  这么一行代码,额~ 心中默默来了一句卧槽。

UUID 虽然可以做到全局唯一性,但还是不推荐使用它作为主键,因为我们的实际业务中不管是 user_id 还是 order_id 主键多为整型,而  UUID 生成的是个 32 位的字符串。

它的存储以及查询对 MySQL 的性能消耗较大,而且 MySQL 官方也明确建议,主键要尽量越短越好,作为数据库主键 UUID  的无序性还会导致数据位置频繁变动,严重影响性能。

public final class UUIDShardingKeyGenerator implements ShardingKeyGenerator {     private Properties properties = new Properties();      public UUIDShardingKeyGenerator() {     }      public String getType() {         return "UUID";     }      public synchronized Comparable<?> generateKey() {         return UUID.randomUUID().toString().replaceAll("-", "");     }      public Properties getProperties() {         return this.properties;     }      public void setProperties(Properties properties) {         this.properties = properties;     } }

SNOWFLAKE

SNOWFLAKE(雪花算法)是默认使用的主键生成方案,生成一个 64bit的长整型(Long)数据。

sharding-jdbc 中雪花算法生成的主键主要由 4部分组成,1bit符号位、41bit时间戳位、10bit工作进程位以及 12bit  序列号位。

分库分表的分布式主键ID生成方法有哪些

符号位(1bit位)

Java 中 Long 型的最高位是符号位,正数是0,负数是1,一般生成ID都为正数,所以默认为0

时间戳位(41bit)

41位的时间戳可以容纳的毫秒数是 2 的 41次幂,而一年的总毫秒数为 1000L * 60 * 60 * 24 *  365,计算使用时间大概是69年,额~,我有生之间算是够用了。

Math.pow(2, 41) / (365 * 24 * 60 * 60 * 1000L) = = 69年

工作进程位(10bit)

表示一个唯一的工作进程id,默认值为 0,可通过 key-generator.props.worker.id 属性设置。

spring.shardingsphere.sharding.tables.t_order.key-generator.props.worker.id=0000

序列号位(12bit)

同一毫秒内生成不同的ID。

时钟回拨

了解了雪花算法的主键 ID 组成后不难发现,这是一种严重依赖于服务器时间的算法,而依赖服务器时间的就会遇到一个棘手的问题:时钟回拨。

为什么会出现时钟回拨呢?

互联网中有一种网络时间协议 ntp 全称 (Network Time Protocol) ,专门用来同步、校准网络中各个计算机的时间。

这就是为什么,我们的手机现在不用手动校对时间,可每个人的手机时间还都是一样的。

我们的硬件时钟可能会因为各种原因变得不准( 快了 或 慢了 ),此时就需要 ntp 服务来做时间校准,做校准的时候就会发生服务器时钟的 跳跃 或者 回拨  的问题。

雪花算法如何解决时钟回拨

服务器时钟回拨会导致产生重复的 ID,SNOWFLAKE 方案中对原有雪花算法做了改进,增加了一个最大容忍的时钟回拨毫秒数。

如果时钟回拨的时间超过最大容忍的毫秒数阈值,则程序直接报错;如果在可容忍的范围内,默认分布式主键生成器,会等待时钟同步到最后一次主键生成的时间后再继续工作。

最大容忍的时钟回拨毫秒数,默认值为 0,可通过属性 max.tolerate.time.difference.milliseconds 设置。

# 最大容忍的时钟回拨毫秒数 spring.shardingsphere.sharding.tables.t_order.key-generator.max.tolerate.time.difference.milliseconds=5

下面是看下它的源码实现类 SnowflakeShardingKeyGenerator,核心流程大概如下:

最后一次生成主键的时间 lastMilliseconds 与 当前时间currentMilliseconds 做比较,如果  lastMilliseconds > currentMilliseconds则意味着时钟回调了。

那么接着判断两个时间的差值(timeDifferenceMilliseconds)是否在设置的最大容忍时间阈值  max.tolerate.time.difference.milliseconds内,在阈值内则线程休眠差值时间  Thread.sleep(timeDifferenceMilliseconds),否则大于差值直接报异常。

 public final class SnowflakeShardingKeyGenerator implements ShardingKeyGenerator{     @Getter     @Setter     private Properties properties = new Properties();          public String getType() {         return "SNOWFLAKE";     }          public synchronized Comparable<?> generateKey() {                long currentMilliseconds = timeService.getCurrentMillis();                   if (waitTolerateTimeDifferenceIfNeed(currentMilliseconds)) {             currentMilliseconds = timeService.getCurrentMillis();         }                  if (lastMilliseconds == currentMilliseconds) {                       if (0L == (sequence = (sequence + 1) & SEQUENCE_MASK)) {                 currentMilliseconds = waitUntilNextTime(currentMilliseconds);             }         } else {                       vibrateSequenceOffset();             sequence = sequenceOffset;         }         lastMilliseconds = currentMilliseconds;                           return ((currentMilliseconds - EPOCH) << TIMESTAMP_LEFT_SHIFT_BITS) | (getWorkerId() << WORKER_ID_LEFT_SHIFT_BITS) | sequence;     }               @SneakyThrows     private boolean waitTolerateTimeDifferenceIfNeed(final long currentMilliseconds) {               if (lastMilliseconds <= currentMilliseconds) {             return false;         }                           long timeDifferenceMilliseconds = lastMilliseconds - currentMilliseconds;                  Preconditions.checkState(timeDifferenceMilliseconds < getMaxTolerateTimeDifferenceMilliseconds(),                  "Clock is moving backwards, last time is %d milliseconds, current time is %d milliseconds", lastMilliseconds, currentMilliseconds);                  Thread.sleep(timeDifferenceMilliseconds);         return true;     }          // 配置的机器ID     private long getWorkerId() {         long result = Long.valueOf(properties.getProperty("worker.id", String.valueOf(WORKER_ID)));         Preconditions.checkArgument(result >= 0L && result < WORKER_ID_MAX_VALUE);         return result;     }          private int getMaxTolerateTimeDifferenceMilliseconds() {         return Integer.valueOf(properties.getProperty("max.tolerate.time.difference.milliseconds", String.valueOf(MAX_TOLERATE_TIME_DIFFERENCE_MILLISECONDS)));     }          private long waitUntilNextTime(final long lastTime) {         long result = timeService.getCurrentMillis();         while (result <= lastTime) {             result = timeService.getCurrentMillis();         }         return result;     } }

但从 SNOWFLAKE 方案生成的主键ID 来看,order_id 它是一个18位的长整型数字,是不是发现它太长了,想要 MySQL 那种从 0  递增的自增主键该怎么实现呢?别急,后边已经会给出了解决办法!

分库分表的分布式主键ID生成方法有哪些

自定义

sharding-jdbc 利用 SPI 全称( Service Provider Interface)  机制拓展主键生成规则,这是一种服务发现机制,通过扫描项目路径 META-INF/services 下的文件,并自动加载文件里所定义的类。

实现自定义主键生成器其实比较简单,只有两步。

第一步,实现 ShardingKeyGenerator 接口,并重写其内部方法,其中 getType()  方法为自定义的主键生产方案类型、generateKey() 方法则是具体生成主键的规则。

下面代码中用 AtomicInteger 来模拟实现一个有序自增的 ID 生成。

 @Component public class MyShardingKeyGenerator implements ShardingKeyGenerator {       private final AtomicInteger count = new AtomicInteger();           @Override     public String getType() {         return "XXX";     }           @Override     public Comparable<?> generateKey() {         return count.incrementAndGet();     }      @Override     public Properties getProperties() {         return null;     }      @Override     public void setProperties(Properties properties) {      } }

第二步,由于是利用 SPI 机制实现功能拓展,我们要在 META-INF/services 文件中配置自定义的主键生成器类路劲。

com.xiaofu.sharding.key.MyShardingKeyGenerator

分库分表的分布式主键ID生成方法有哪些

上面这些弄完我们测试一下,配置定义好的主键生成类型 XXX,并插入几条数据看看效果。

spring.shardingsphere.sharding.tables.t_order.key-generator.column=order_id spring.shardingsphere.sharding.tables.t_order.key-generator.type=XXX

通过控制台的SQL 解析日志发现,order_id 字段已按照有序自增的方式插入记录,说明配置的没问题。

分库分表的分布式主键ID生成方法有哪些

举一反九

既然可以自定义生成方案,那么实现分布式主键的思路就很多了,又想到之前我写的这篇 《9种 分布式ID生成方案》,发现可以完美兼容,这里挑选其中的  滴滴(Tinyid)来实践一下,由于它是个单独的分布式ID生成服务,所以要先搭建环境了。

Tinyid 的服务提供Http 和 Tinyid-client 两种接入方式,下边使用 Tinyid-client  方式快速使用,更多的细节到这篇文章里看吧,实在是介绍过太多次了。

Tinyid 服务搭建

先拉源代码 https://github.com/didi/tinyid.git。

由于是基于号段模式实现的分布式ID,所以依赖于数据库,要创建相应的表 tiny_id_info 、tiny_id_token 并插入默认数据。

CREATE TABLE `tiny_id_info` (  `id` BIGINT (20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT '自增主键',  `biz_type` VARCHAR (63) NOT NULL DEFAULT '' COMMENT '业务类型,唯一',  `begin_id` BIGINT (20) NOT NULL DEFAULT '0' COMMENT '开始id,仅记录初始值,无其他含义。初始化时begin_id和max_id应相同',  `max_id` BIGINT (20) NOT NULL DEFAULT '0' COMMENT '当前最大id',  `step` INT (11) DEFAULT '0' COMMENT '步长',  `delta` INT (11) NOT NULL DEFAULT '1' COMMENT '每次id增量',  `remainder` INT (11) NOT NULL DEFAULT '0' COMMENT '余数',  `create_time` TIMESTAMP NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '创建时间',  `update_time` TIMESTAMP NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '更新时间',  `version` BIGINT (20) NOT NULL DEFAULT '0' COMMENT '版本号',  PRIMARY KEY (`id`),  UNIQUE KEY `uniq_biz_type` (`biz_type`) ) ENGINE = INNODB AUTO_INCREMENT = 1 DEFAULT CHARSET = utf8 COMMENT 'id信息表';  CREATE TABLE `tiny_id_token` (  `id` INT (11) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT '自增id',  `token` VARCHAR (255) NOT NULL DEFAULT '' COMMENT 'token',  `biz_type` VARCHAR (63) NOT NULL DEFAULT '' COMMENT '此token可访问的业务类型标识',  `remark` VARCHAR (255) NOT NULL DEFAULT '' COMMENT '备注',  `create_time` TIMESTAMP NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '创建时间',  `update_time` TIMESTAMP NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '更新时间',  PRIMARY KEY (`id`) ) ENGINE = INNODB AUTO_INCREMENT = 1 DEFAULT CHARSET = utf8 COMMENT 'token信息表';  INSERT INTO `tiny_id_token` (`id`, `token`, `biz_type`, `remark`, `create_time`, `update_time`) VALUES ('1', '0f673adf80504e2eaa552f5d791b644c', 'order', '1', '2017-12-14 16:36:46', '2017-12-14 16:36:48');  INSERT INTO `tiny_id_info` (`id`, `biz_type`, `begin_id`, `max_id`, `step`, `delta`, `remainder`, `create_time`, `update_time`, `version`) VALUES ('1', 'order', '1', '1', '100000', '1', '0', '2018-07-21 23:52:58', '2018-07-22 23:19:27', '1');

并在 Tinyid 服务中配置上边表所在数据源信息

datasource.tinyid.primary.url=jdbc:mysql://47.93.6.e:3306/ds-0?autoReconnect=true&useUnicode=true&characterEncoding=UTF-8 datasource.tinyid.primary.username=root datasource.tinyid.primary.password=root

最后项目 maven install ,右键 TinyIdServerApplication 启动服务, Tinyid  分布式ID生成服务就搭建完毕了。

自定义 Tinyid 主键类型

Tinyid 服务搭建完下边在项目中引入它,新建个 tinyid_client.properties 文件其中添加 tinyid.server 和  tinyid.token 属性,token 为之前 SQL 预先插入的用户数据。

# tinyid 分布式ID # 服务地址 tinyid.server=127.0.0.1:9999 # 业务token tinyid.token=0f673adf80504e2eaa552f5d791b644c

代码中获取 ID更简单,只需一行代码,业务类型 order 是之前 SQ L 预先插入的数据。

Long id = TinyId.nextId("order");

我们开始自定义 Tinyid 主键生成类型的实现类 TinyIdShardingKeyGenerator 。

 @Component public class TinyIdShardingKeyGenerator implements ShardingKeyGenerator {               @Override     public String getType() {         return "tinyid";     }           @Override     public Comparable<?> generateKey() {                  Long id = TinyId.nextId("order");                  return id;     }      @Override     public Properties getProperties() {         return null;     }      @Override     public void setProperties(Properties properties) {      } }

并在配置文件中启用 Tinyid 主键生成类型,到此配置完毕,赶紧测试一下。

# 主键字段 spring.shardingsphere.sharding.tables.t_order.key-generator.column=order_id # 主键ID 生成方案 spring.shardingsphere.sharding.tables.t_order.key-generator.type=tinyid

测试 Tinyid 主键

向数据库插入订单记录测试发现,主键ID字段 order_id 已经为趋势递增的了, Tinyid 服务成功接入,完美!

分库分表的分布式主键ID生成方法有哪些

到此,相信大家对“分库分表的分布式主键ID生成方法有哪些”有了更深的了解,不妨来实际操作一番吧!这里是亿速云网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

分库分表的分布式主键ID生成方法有哪些

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

redis分布式ID解决方法有哪些

这篇文章主要介绍“redis分布式ID解决方法有哪些”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“redis分布式ID解决方法有哪些”文章能帮助大家解决问题。常用的分布式ID解决方案在分布式系统中,
2023-07-05

java分布式ID生成方法是什么

本篇内容介绍了“java分布式ID生成方法是什么”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!一、需求缘起几乎所有的业务系统,都有生成一个唯
2023-06-04

MySQL分库分表的方式有哪些

本文小编为大家详细介绍“MySQL分库分表的方式有哪些”,内容详细,步骤清晰,细节处理妥当,希望这篇“MySQL分库分表的方式有哪些”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。一、为什么要分库分表如果一个网站业
2023-06-30

mysql分库分表的方法有哪些

MySQL分库分表的方法主要有以下几种:1. 水平分库分表:将一个大的数据库分为多个小的数据库,每个数据库存储不同的数据表。可以按照业务模块、地域等维度进行划分,可以提高并发能力和扩展性。2. 垂直分库分表:将一个大的数据库按照数据表的关系
2023-08-15

mysql分库分表的实现方法有哪些

在MySQL中,实现分库分表有多种方法,包括:水平分库:将数据按照一定规则分散到不同的数据库中,通常是按照用户ID或者时间段进行分库。垂直分库:将数据按照业务模块划分到不同的数据库中,例如将用户信息存储在一个数据库中,将订单信息存储在另一个
mysql分库分表的实现方法有哪些
2024-04-17

Redis实现分布式锁的方法有哪些

今天小编给大家分享一下Redis实现分布式锁的方法有哪些的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。1. 单机数据一致性单
2023-07-02

PostgreSQL表分区的方式有哪些

这篇文章主要讲解了“PostgreSQL表分区的方式有哪些”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“PostgreSQL表分区的方式有哪些”吧!目录一、简介二、三种方式2.1、Range
2023-06-20

编程热搜

目录