我的编程空间,编程开发者的网络收藏夹
学习永远不晚

C++ OpenCV实现之实现红绿灯识别

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

C++ OpenCV实现之实现红绿灯识别

前言

本文以实现行车过程当中的红绿灯识别为目标,核心的内容包括:OpenCV轮廓识别原理以及OpenCV红绿灯识别的实现具体步骤

一、轮廓识别相关原理

什么是轮廓检测

目前轮廓检测方法有两类,一类是利用传统的边缘检测算子检测目标轮廓,另一类是从人类视觉系统中提取可以使用的数学模型完成目标轮廓检测

轮廓提取函数findContours

函数原型: 

findContours( InputOutputArray image, OutputArrayOfArrays contours,
                              OutputArray hierarchy, int mode,
                              int method, Point offset=Point());

参数:

image:单通道图像矩阵,可以是灰度图,但更常用的是二值图像,一般是经过Canny、拉普拉斯等边缘检测算子处理过的二值图像

contours:  定义为“vector<vector<Point>> contours”,是一个向量,并且是一个双重向量,向量内每个元素保存了一组由连续的Point点构成的点的集合的向量,每一组Point点集就是一个轮廓。有多少轮廓,向量contours就有多少元素

hierarchy:  也是一个向量,向量内每个元素保存了一个包含4个int整型的数组。向量内的元素和轮廓向量contours内的元素是一一对应的,向量的容量相同

int mode: 

取值一:CV_CHAIN_APPROX_NONE 保存物体边界上所有连续的轮廓点到 contours向量内

取值二:CV_CHAIN_APPROX_SIMPLE 仅保存轮廓的拐点信息,把所有轮廓拐点处的点保存入contours向量内,拐点与拐点之间直线段上的信息点不予保留

取值三和四:CV_CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS使用teh-Chinl chain 近似算法

Point: Point偏移量,所有的轮廓信息相对于原始图像对应点的偏移量,相当于在每一个检测出的轮廓点上加上该偏移量,并且Point还可以是负值!

参数详解引用出处:findContours函数参数详解

二、案例实现

这是本案例所用到的素材,如下图所示: 

PS:视频的效果比较好,如果方便的话可以自行外出拍摄取材

Step1:初始化配置

做好准备工作,创建我们需要的内容,设置亮度参数,以及我们导入的视频路径

    int redCount = 0;
    int greenCount = 0;
 
    Mat frame;
    Mat img;
    Mat imgYCrCb;
    Mat imgGreen;
    Mat imgRed;
 
    // 亮度参数
    double a = 0.3;
    double b = (1 - a) * 125;
 
    VideoCapture capture("C:/Users/86177/Desktop/image/123.mp4");//导入视频的路径
    if (!capture.isOpened())
    {
        cout << "Start device failed!\n" << endl;//启动设备失败!
        return -1;
    }

Step2:进行帧处理

调整视频亮度,分解YCrCb的三个成分,拆分红色和绿色,方便对红绿两种颜色进行特征提取

    // 帧处理
    while (1)
    {
        capture >> frame;
        //调整亮度
        frame.convertTo(img, img.type(), a, b);
 
        //转换为YCrCb颜色空间
        cvtColor(img, imgYCrCb, CV_BGR2YCrCb);
 
        imgRed.create(imgYCrCb.rows, imgYCrCb.cols, CV_8UC1);
        imgGreen.create(imgYCrCb.rows, imgYCrCb.cols, CV_8UC1);
 
        //分解YCrCb的三个成分
        vector<Mat> planes;
        split(imgYCrCb, planes);
        // 遍历以根据Cr分量拆分红色和绿色
        MatIterator_<uchar> it_Cr = planes[1].begin<uchar>(),
                it_Cr_end = planes[1].end<uchar>();
        MatIterator_<uchar> it_Red = imgRed.begin<uchar>();
        MatIterator_<uchar> it_Green = imgGreen.begin<uchar>();
 
        for (; it_Cr != it_Cr_end; ++it_Cr, ++it_Red, ++it_Green)
        {
            // RED, 145<Cr<470 红色
            if (*it_Cr > 145 && *it_Cr < 470)
                *it_Red = 255;
            else
                *it_Red = 0;
 
            // GREEN 95<Cr<110 绿色
            if (*it_Cr > 95 && *it_Cr < 110)
                *it_Green = 255;
            else
                *it_Green = 0;
        }

Step3:膨胀腐蚀处理

去除其他噪点,提高我们需要的红绿灯的特征

        //膨胀和腐蚀
        dilate(imgRed, imgRed, Mat(15, 15, CV_8UC1), Point(-1, -1));
        erode(imgRed, imgRed, Mat(1, 1, CV_8UC1), Point(-1, -1));
        dilate(imgGreen, imgGreen, Mat(15, 15, CV_8UC1), Point(-1, -1));
        erode(imgGreen, imgGreen, Mat(1, 1, CV_8UC1), Point(-1, -1));
 
        redCount = processImgR(imgRed);
        greenCount = processImgG(imgGreen);
        cout << "red:" << redCount << ";  " << "green:" << greenCount << endl;

Step4:红绿灯提示判断

加入红绿灯识别结果显示,方便我们查看效果

        if(redCount == 0 && greenCount == 0)
        {
            cv::putText(frame, "lights out", Point(40, 150), cv::FONT_HERSHEY_SIMPLEX, 2, cv::Scalar(255, 255, 255), 8, 8, 0);
        }else if(redCount > greenCount)
        {
            cv::putText(frame, "red light", Point(40, 150), cv::FONT_HERSHEY_SIMPLEX, 2, cv::Scalar(0, 0, 255), 8, 8, 0);
        }else{
            cv::putText(frame, "green light", Point(40, 150), cv::FONT_HERSHEY_SIMPLEX, 2, cv::Scalar(0, 255, 0), 8, 8, 0);
        }

Step5:轮廓提取

分别对红灯和绿灯进行轮廓特征提取,提高辨识度

int processImgR(Mat class="lazy" data-src)
{
    Mat tmp;
 
    vector<vector<Point>> contours;
    vector<Vec4i> hierarchy;
    vector<Point> hull;
 
    CvPoint2D32f tempNode;
    CvMemStorage* storage = cvCreateMemStorage();
    CvSeq* pointSeq = cvCreateSeq(CV_32FC2, sizeof(CvSeq), sizeof(CvPoint2D32f), storage);
 
    Rect* trackBox;
    Rect* result;
    int resultNum = 0;
 
    int area = 0;
    class="lazy" data-src.copyTo(tmp);
 
    //提取轮廓
    findContours(tmp, contours, hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
 
    if (contours.size() > 0)
    {
        trackBox = new Rect[contours.size()];
        result = new Rect[contours.size()];
 
        //确定要跟踪的区域
        for (int i = 0; i < contours.size(); i++)
        {
            cvClearSeq(pointSeq);
            // 获取凸包的点集
            convexHull(Mat(contours[i]), hull, true);
            int hullcount = (int)hull.size();
            // 凸包的保存点
            for (int j = 0; j < hullcount - 1; j++)
            {
                tempNode.x = hull[j].x;
                tempNode.y = hull[j].y;
                cvSeqPush(pointSeq, &tempNode);
            }
 
            trackBox[i] = cvBoundingRect(pointSeq);
        }
 
        if (isFirstDetectedR)
        {
            lastTrackBoxR = new Rect[contours.size()];
            for (int i = 0; i < contours.size(); i++)
                lastTrackBoxR[i] = trackBox[i];
            lastTrackNumR = contours.size();
            isFirstDetectedR = false;
        }
        else
        {
            for (int i = 0; i < contours.size(); i++)
            {
                for (int j = 0; j < lastTrackNumR; j++)
                {
                    if (isIntersected(trackBox[i], lastTrackBoxR[j]))
                    {
                        result[resultNum] = trackBox[i];
                        break;
                    }
                }
                resultNum++;
            }
            delete[] lastTrackBoxR;
            lastTrackBoxR = new Rect[contours.size()];
            for (int i = 0; i < contours.size(); i++)
            {
                lastTrackBoxR[i] = trackBox[i];
            }
            lastTrackNumR = contours.size();
        }
 
        delete[] trackBox;
    }
    else
    {
        isFirstDetectedR = true;
        result = NULL;
    }
    cvReleaseMemStorage(&storage);
 
    if (result != NULL)
    {
        for (int i = 0; i < resultNum; i++)
        {
            area += result[i].area();
        }
    }
    delete[] result;
 
    return area;
}
 
int processImgG(Mat class="lazy" data-src)
{
    Mat tmp;
 
    vector<vector<Point> > contours;
    vector<Vec4i> hierarchy;
    vector< Point > hull;
 
    CvPoint2D32f tempNode;
    CvMemStorage* storage = cvCreateMemStorage();
    CvSeq* pointSeq = cvCreateSeq(CV_32FC2, sizeof(CvSeq), sizeof(CvPoint2D32f), storage);
 
    Rect* trackBox;
    Rect* result;
    int resultNum = 0;
 
    int area = 0;
 
    class="lazy" data-src.copyTo(tmp);
    //提取轮廓
    findContours(tmp, contours, hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
 
    if (contours.size() > 0)
    {
        trackBox = new Rect[contours.size()];
        result = new Rect[contours.size()];
 
        // 确定要跟踪的区域
        for (int i = 0; i < contours.size(); i++)
        {
            cvClearSeq(pointSeq);
            // 获取凸包的点集
            convexHull(Mat(contours[i]), hull, true);
            int hullcount = (int)hull.size();
            // 保存凸包的点
            for (int j = 0; j < hullcount - 1; j++)
            {
                tempNode.x = hull[j].x;
                tempNode.y = hull[j].y;
                cvSeqPush(pointSeq, &tempNode);
            }
 
            trackBox[i] = cvBoundingRect(pointSeq);
        }
 
        if (isFirstDetectedG)
        {
            lastTrackBoxG = new Rect[contours.size()];
            for (int i = 0; i < contours.size(); i++)
                lastTrackBoxG[i] = trackBox[i];
            lastTrackNumG = contours.size();
            isFirstDetectedG = false;
        }
        else
        {
            for (int i = 0; i < contours.size(); i++)
            {
                for (int j = 0; j < lastTrackNumG; j++)
                {
                    if (isIntersected(trackBox[i], lastTrackBoxG[j]))
                    {
                        result[resultNum] = trackBox[i];
                        break;
                    }
                }
                resultNum++;
            }
            delete[] lastTrackBoxG;
            lastTrackBoxG = new Rect[contours.size()];
            for (int i = 0; i < contours.size(); i++)
            {
                lastTrackBoxG[i] = trackBox[i];
            }
            lastTrackNumG = contours.size();
        }
 
        delete[] trackBox;
    }
    else
    {
        isFirstDetectedG = true;
        result = NULL;
    }
    cvReleaseMemStorage(&storage);
 
    if (result != NULL)
    {
        for (int i = 0; i < resultNum; i++)
        {
            area += result[i].area();
        }
    }
    delete[] result;
 
    return area;
}

Step6:判断是否相交

//确定两个矩形区域是否相交
bool isIntersected(Rect r1, Rect r2)
{
    int minX = max(r1.x, r2.x);
    int minY = max(r1.y, r2.y);
    int maxX = min(r1.x + r1.width, r2.x + r2.width);
    int maxY = min(r1.y + r1.height, r2.y + r2.height);
 
    if (minX < maxX && minY < maxY)
        return true;
    else
        return false;
}

案例效果

完整代码

#include "opencv2/opencv.hpp"
#include "opencv2/imgproc.hpp"
#include <windows.h>
#include <iostream>
 
using namespace std;
using namespace cv;
 
// Function headers
int processImgR(Mat);
int processImgG(Mat);
bool isIntersected(Rect, Rect);
 
// Global variables
bool isFirstDetectedR = true;
bool isFirstDetectedG = true;
Rect* lastTrackBoxR;
Rect* lastTrackBoxG;
int lastTrackNumR;
int lastTrackNumG;
 
//主函数
int main()
{
    int redCount = 0;
    int greenCount = 0;
 
    Mat frame;
    Mat img;
    Mat imgYCrCb;
    Mat imgGreen;
    Mat imgRed;
 
    // 亮度参数
    double a = 0.3;
    double b = (1 - a) * 125;
 
    VideoCapture capture("C:/Users/86177/Desktop/image/123.mp4");//导入视频的路径
    if (!capture.isOpened())
    {
        cout << "Start device failed!\n" << endl;//启动设备失败!
        return -1;
    }
 
    // 帧处理
    while (1)
    {
        capture >> frame;
        //调整亮度
        frame.convertTo(img, img.type(), a, b);
 
        //转换为YCrCb颜色空间
        cvtColor(img, imgYCrCb, CV_BGR2YCrCb);
 
        imgRed.create(imgYCrCb.rows, imgYCrCb.cols, CV_8UC1);
        imgGreen.create(imgYCrCb.rows, imgYCrCb.cols, CV_8UC1);
 
        //分解YCrCb的三个成分
        vector<Mat> planes;
        split(imgYCrCb, planes);
        // 遍历以根据Cr分量拆分红色和绿色
        MatIterator_<uchar> it_Cr = planes[1].begin<uchar>(),
                it_Cr_end = planes[1].end<uchar>();
        MatIterator_<uchar> it_Red = imgRed.begin<uchar>();
        MatIterator_<uchar> it_Green = imgGreen.begin<uchar>();
 
        for (; it_Cr != it_Cr_end; ++it_Cr, ++it_Red, ++it_Green)
        {
            // RED, 145<Cr<470 红色
            if (*it_Cr > 145 && *it_Cr < 470)
                *it_Red = 255;
            else
                *it_Red = 0;
 
            // GREEN 95<Cr<110 绿色
            if (*it_Cr > 95 && *it_Cr < 110)
                *it_Green = 255;
            else
                *it_Green = 0;
        }
 
        //膨胀和腐蚀
        dilate(imgRed, imgRed, Mat(15, 15, CV_8UC1), Point(-1, -1));
        erode(imgRed, imgRed, Mat(1, 1, CV_8UC1), Point(-1, -1));
        dilate(imgGreen, imgGreen, Mat(15, 15, CV_8UC1), Point(-1, -1));
        erode(imgGreen, imgGreen, Mat(1, 1, CV_8UC1), Point(-1, -1));
 
        redCount = processImgR(imgRed);
        greenCount = processImgG(imgGreen);
        cout << "red:" << redCount << ";  " << "green:" << greenCount << endl;
 
        if(redCount == 0 && greenCount == 0)
        {
            cv::putText(frame, "lights out", Point(40, 150), cv::FONT_HERSHEY_SIMPLEX, 2, cv::Scalar(255, 255, 255), 8, 8, 0);
        }else if(redCount > greenCount)
        {
            cv::putText(frame, "red light", Point(40, 150), cv::FONT_HERSHEY_SIMPLEX, 2, cv::Scalar(0, 0, 255), 8, 8, 0);
        }else{
            cv::putText(frame, "green light", Point(40, 150), cv::FONT_HERSHEY_SIMPLEX, 2, cv::Scalar(0, 255, 0), 8, 8, 0);
        }
 
        imshow("video", frame);
        imshow("Red", imgRed);
        imshow("Green", imgGreen);
 
        // Handle with the keyboard input
        if (cvWaitKey(20) == 'q')
            break;
    }
 
    return 0;
}
 
int processImgR(Mat class="lazy" data-src)
{
    Mat tmp;
 
    vector<vector<Point>> contours;
    vector<Vec4i> hierarchy;
    vector<Point> hull;
 
    CvPoint2D32f tempNode;
    CvMemStorage* storage = cvCreateMemStorage();
    CvSeq* pointSeq = cvCreateSeq(CV_32FC2, sizeof(CvSeq), sizeof(CvPoint2D32f), storage);
 
    Rect* trackBox;
    Rect* result;
    int resultNum = 0;
 
    int area = 0;
    class="lazy" data-src.copyTo(tmp);
 
    //提取轮廓
    findContours(tmp, contours, hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
 
    if (contours.size() > 0)
    {
        trackBox = new Rect[contours.size()];
        result = new Rect[contours.size()];
 
        //确定要跟踪的区域
        for (int i = 0; i < contours.size(); i++)
        {
            cvClearSeq(pointSeq);
            // 获取凸包的点集
            convexHull(Mat(contours[i]), hull, true);
            int hullcount = (int)hull.size();
            // 凸包的保存点
            for (int j = 0; j < hullcount - 1; j++)
            {
                tempNode.x = hull[j].x;
                tempNode.y = hull[j].y;
                cvSeqPush(pointSeq, &tempNode);
            }
 
            trackBox[i] = cvBoundingRect(pointSeq);
        }
 
        if (isFirstDetectedR)
        {
            lastTrackBoxR = new Rect[contours.size()];
            for (int i = 0; i < contours.size(); i++)
                lastTrackBoxR[i] = trackBox[i];
            lastTrackNumR = contours.size();
            isFirstDetectedR = false;
        }
        else
        {
            for (int i = 0; i < contours.size(); i++)
            {
                for (int j = 0; j < lastTrackNumR; j++)
                {
                    if (isIntersected(trackBox[i], lastTrackBoxR[j]))
                    {
                        result[resultNum] = trackBox[i];
                        break;
                    }
                }
                resultNum++;
            }
            delete[] lastTrackBoxR;
            lastTrackBoxR = new Rect[contours.size()];
            for (int i = 0; i < contours.size(); i++)
            {
                lastTrackBoxR[i] = trackBox[i];
            }
            lastTrackNumR = contours.size();
        }
 
        delete[] trackBox;
    }
    else
    {
        isFirstDetectedR = true;
        result = NULL;
    }
    cvReleaseMemStorage(&storage);
 
    if (result != NULL)
    {
        for (int i = 0; i < resultNum; i++)
        {
            area += result[i].area();
        }
    }
    delete[] result;
 
    return area;
}
 
int processImgG(Mat class="lazy" data-src)
{
    Mat tmp;
 
    vector<vector<Point> > contours;
    vector<Vec4i> hierarchy;
    vector< Point > hull;
 
    CvPoint2D32f tempNode;
    CvMemStorage* storage = cvCreateMemStorage();
    CvSeq* pointSeq = cvCreateSeq(CV_32FC2, sizeof(CvSeq), sizeof(CvPoint2D32f), storage);
 
    Rect* trackBox;
    Rect* result;
    int resultNum = 0;
 
    int area = 0;
 
    class="lazy" data-src.copyTo(tmp);
    //提取轮廓
    findContours(tmp, contours, hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
 
    if (contours.size() > 0)
    {
        trackBox = new Rect[contours.size()];
        result = new Rect[contours.size()];
 
        // 确定要跟踪的区域
        for (int i = 0; i < contours.size(); i++)
        {
            cvClearSeq(pointSeq);
            // 获取凸包的点集
            convexHull(Mat(contours[i]), hull, true);
            int hullcount = (int)hull.size();
            // 保存凸包的点
            for (int j = 0; j < hullcount - 1; j++)
            {
                tempNode.x = hull[j].x;
                tempNode.y = hull[j].y;
                cvSeqPush(pointSeq, &tempNode);
            }
 
            trackBox[i] = cvBoundingRect(pointSeq);
        }
 
        if (isFirstDetectedG)
        {
            lastTrackBoxG = new Rect[contours.size()];
            for (int i = 0; i < contours.size(); i++)
                lastTrackBoxG[i] = trackBox[i];
            lastTrackNumG = contours.size();
            isFirstDetectedG = false;
        }
        else
        {
            for (int i = 0; i < contours.size(); i++)
            {
                for (int j = 0; j < lastTrackNumG; j++)
                {
                    if (isIntersected(trackBox[i], lastTrackBoxG[j]))
                    {
                        result[resultNum] = trackBox[i];
                        break;
                    }
                }
                resultNum++;
            }
            delete[] lastTrackBoxG;
            lastTrackBoxG = new Rect[contours.size()];
            for (int i = 0; i < contours.size(); i++)
            {
                lastTrackBoxG[i] = trackBox[i];
            }
            lastTrackNumG = contours.size();
        }
 
        delete[] trackBox;
    }
    else
    {
        isFirstDetectedG = true;
        result = NULL;
    }
    cvReleaseMemStorage(&storage);
 
    if (result != NULL)
    {
        for (int i = 0; i < resultNum; i++)
        {
            area += result[i].area();
        }
    }
    delete[] result;
 
    return area;
}
 
//确定两个矩形区域是否相交
bool isIntersected(Rect r1, Rect r2)
{
    int minX = max(r1.x, r2.x);
    int minY = max(r1.y, r2.y);
    int maxX = min(r1.x + r1.width, r2.x + r2.width);
    int maxY = min(r1.y + r1.height, r2.y + r2.height);
 
    if (minX < maxX && minY < maxY)
        return true;
    else
        return false;
}

三、总结

本文主要讲解OpenCV轮廓识别原理以及OpenCV红绿灯识别的实现具体步骤OpenCV还是有很多识别的库函数可以用,接下来继续探索,结合生活实际继续做一些有意思的案例

到此这篇关于C++ OpenCV实现之实现红绿灯识别的文章就介绍到这了,更多相关C++ OpenCV红绿灯识别内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

C++ OpenCV实现之实现红绿灯识别

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

C++ OpenCV实现之实现红绿灯识别

本文以实现行车过程当中的红绿灯识别为目标,核心的内容包括:OpenCV轮廓识别原理以及OpenCV红绿灯识别的实现具体步骤,感兴趣的可以了解一下
2022-11-13

react如何实现红绿灯

本篇内容介绍了“react如何实现红绿灯”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!react实现红绿灯的方法:1、引入“import R
2023-07-05

纯CSS如何实现红绿灯效果

这篇文章主要介绍纯CSS如何实现红绿灯效果,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!1、下面的代码输出的内容是什么?function O(name){ this.name=name||world;}O.pr
2023-06-08

JS面试异步模拟红绿灯实现详解

这篇文章主要为大家介绍了JS面试异步模拟红绿灯实现示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-01-10

OpenCV实现人脸识别

主要有以下步骤: 1、人脸检测 2、人脸预处理 3、从收集的人脸训练机器学习算法 4、人脸识别 5、收尾工作 人脸检测算法: 基于Haar的脸部检测器的基本思想是,对于面部正面大部分区域而言,会有眼睛所在区域应该比前额和脸颊更暗,嘴巴应该比
2022-06-04

C++ OpenCV怎么实现形状识别功能

本篇内容主要讲解“C++ OpenCV怎么实现形状识别功能”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“C++ OpenCV怎么实现形状识别功能”吧!一、图像预处理原图如图所示:首先第一步先进行
2023-07-02

C++中怎么用OpenCV实现手势识别

本篇内容介绍了“C++中怎么用OpenCV实现手势识别”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!一、手部关键点检测如图所示,为我们的手部
2023-06-29

python+opencv 车牌识别实现

识别思路:1、通过摄像头采集图片2、对图片进行去噪、对比度加强处理等操作3、车牌位置的定位,采集到车牌信息4、对车牌字母进行分割5、通过卷积神经网络训练出来的模型,对采集车牌的各个字母进行识别6、对结果进行组合,最后得到车牌信息环境搭建:p
2023-01-31

C++OpenCV实战之手写数字识别

这篇文章主要为大家详细介绍了如何使用machinelearning机器学习模块进行手写数字识别功能,文中的示例代码讲解详细,感兴趣的可以了解一下
2022-11-13

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录