我的编程空间,编程开发者的网络收藏夹
学习永远不晚

HIVE中Sqoop1.4.6安装、hive与oracle表互导的示例分析

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

HIVE中Sqoop1.4.6安装、hive与oracle表互导的示例分析

这篇文章主要为大家展示了“HIVE中Sqoop1.4.6安装、hive与oracle表互导的示例分析”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“HIVE中Sqoop1.4.6安装、hive与oracle表互导的示例分析”这篇文章吧。

sqoop数据迁移

1 概述

sqoop是apache旗下一款“Hadoop和关系数据库服务器之间传送数据”的工具。 
导入数据:MySQL,Oracle导入数据到Hadoop的HDFS、HIVE、HBASE等数据存储系统; 
导出数据:从Hadoop的文件系统中导出数据到关系数据库

2 工作机制

将导入或导出命令翻译成mapreduce程序来实现 
在翻译出的mapreduce中主要是对inputformat和outputformat进行定制

3 sqoop实战及原理

1 sqoop安装

安装sqoop的前提是已经具备java和hadoop的环境 
1、下载并解压 
最新版下载地址http://ftp.wayne.edu/apache/sqoop/1.4.6/ 
比如:sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz

[root@hadoop1 sqoop]# tar -zxvf sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz
[root@hadoop1 sqoop]# mv sqoop-1.4.6.bin__hadoop-2.0.4-alpha sqoop
[root@hadoop1 sqoop]# ls
apache-hive-1.2.1-bin hadoop-2.7.4 hdfs pig-0.17.0 pig_1517170893185.log sqoop tmp

修改配置文件 
在/etc/profile中配置sqoop_home,代码如下:

vim /etc/profile
export SQOOP_HOME=/usr/local/hadoop/sqoop
追加path
export PATH=$PATH:$SQOOP_HOME/bin
[root@hadoop1 sqoop]# source /etc/profile
$ cd $SQOOP_HOME/conf
$ mv sqoop-env-template.sh sqoop-env.sh

打开sqoop-env.sh并编辑下面几行: ## 去掉前面的##

export HADOOP_COMMON_HOME=/usr/local/hadoop/hadoop-2.7.4/
export HADOOP_MAPRED_HOME=/usr/local/hadoop/hadoop-2.7.4/
export HIVE_HOME=/usr/local/hadoop/apache-hive-1.2.1-bin/

配置后的界面效果如下: 
这里写图片描述

1 加入oracle的驱动包
将 ojdbc6.jar 放到 $SQOOP_HOME/lib/ 下。

2 加入mysql的jdbc驱动包 
将mysql-connector-java-5.1.38.jar 放到 $SQOOP_HOME/lib/ 下。

验证启动

$ cd $SQOOP_HOME/bin
$ sqoop-version

预期的输出:


[root@hadoop1 sqoop]# sqoop-version
Warning: /usr/local/hadoop/sqoop/../hbase does not exist! HBase imports will fail.
Please set $HBASE_HOME to the root of your HBase installation.
Warning: /usr/local/hadoop/sqoop/../hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: /usr/local/hadoop/sqoop/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
Warning: /usr/local/hadoop/sqoop/../zookeeper does not exist! Accumulo imports will fail.
Please set $ZOOKEEPER_HOME to the root of your Zookeeper installation.
18/01/29 19:09:34 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
Sqoop 1.4.6
git commit id c0c5a81723759fa575844a0a1eae8f510fa32c25
Compiled by root on Mon Apr 27 14:38:36 CST 2015
[root@hadoop1 sqoop]#

到这里,整个Sqoop安装工作完成。


数据迁移> oracle to hive ## 注意 HIVE 表名需要大写
sqoop# sqoop import --hive-import --connect jdbc:oracle:thin:@10.100.25.8:1521:devdb1 --username andy --password andy \
--table ANDY --hive-database oracletohive --hive-table ANDY -m 1
说明: 迁移的表时,如果 hive中已经存在,则默认会追加在原表中。 如果 hive 中不存在,则自动创建。


日志输出:
18/01/29 19:35:46 INFO hive.HiveImport: Loading uploaded data into Hive
18/01/29 19:35:51 INFO hive.HiveImport: 
18/01/29 19:35:51 INFO hive.HiveImport: Logging initialized using configuration in jar:file:/usr/local/hadoop/apache-hive-1.2.1-bin/lib/hive-common-1.2.1.jar!/hive-log4j.properties
18/01/29 19:36:02 INFO hive.HiveImport: OK
18/01/29 19:36:02 INFO hive.HiveImport: Time taken: 2.42 seconds
18/01/29 19:36:03 INFO hive.HiveImport: Loading data to table oracletohive.andy
18/01/29 19:36:04 INFO hive.HiveImport: Table oracletohive.andy stats: [numFiles=1, totalSize=1996]
18/01/29 19:36:04 INFO hive.HiveImport: OK
18/01/29 19:36:04 INFO hive.HiveImport: Time taken: 1.579 seconds
18/01/29 19:36:04 INFO hive.HiveImport: Hive import complete.
18/01/29 19:36:04 INFO hive.HiveImport: Export directory is contains the _SUCCESS file only, removing the directory.

> show databases;
OK
default
oracletohive
Time taken: 0.027 seconds, Fetched: 2 row(s)
hive> 
> use oracletohive;
OK
Time taken: 0.034 seconds
hive> 
> show tables;
OK
andy
Time taken: 0.037 seconds, Fetched: 1 row(s)
hive> select count(*) from andy;
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2018-01-29 19:43:46,040 Stage-1 map = 0%, reduce = 0%
2018-01-29 19:43:54,738 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.49 sec
2018-01-29 19:44:03,323 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 3.39 sec
MapReduce Total cumulative CPU time: 3 seconds 390 msec
Ended Job = job_1517222580457_0002
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 3.39 sec HDFS Read: 16343 HDFS Write: 2 SUCCESS
Total MapReduce CPU Time Spent: 3 seconds 390 msec
OK
7
Time taken: 34.543 seconds, Fetched: 1 row(s)

数据迁移> hive to oracle

hive迁移oracle,需要提前在oracle中创建迁移的表,否则报 java.sql.SQLSyntaxErrorException: ORA-00942: table or view does not exist


sqoop# sqoop export --table ANDY --connect jdbc:oracle:thin:@10.100.25.8:1521:devdb1 --username andy --password andy 
--export-dir /user/hive/warehouse/oracletohive.db/andy --input-fields-terminated-by '\001' \
--input-lines-terminated-by '\n'

日志输出:
18/01/29 20:21:34 INFO mapreduce.Job: Job job_1517222580457_0005 completed successfully
18/01/29 20:21:34 INFO mapreduce.Job: Counters: 30
。。。。。 省略输出
18/01/29 20:21:34 INFO mapreduce.ExportJobBase: Transferred 5.502 KB in 116.7414 seconds (48.2605 bytes/sec)
18/01/29 20:21:34 INFO mapreduce.ExportJobBase: Exported 7 records.

-- oracle端查看
SQL> select count(*) from andy;

COUNT(*)
----------
14 > 由 7条 变为了 14条 , 说明 hive 导入 oracle 成功!

以上是“HIVE中Sqoop1.4.6安装、hive与oracle表互导的示例分析”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注编程网行业资讯频道!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

HIVE中Sqoop1.4.6安装、hive与oracle表互导的示例分析

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

HIVE中Sqoop1.4.6安装、hive与oracle表互导的示例分析

这篇文章主要为大家展示了“HIVE中Sqoop1.4.6安装、hive与oracle表互导的示例分析”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“HIVE中Sqoop1.4.6安装、hive与o
2023-06-03

Hive中静态分区与动态分区的示例分析

这篇文章给大家分享的是有关Hive中静态分区与动态分区的示例分析的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。  分区是hive存放数据的一种方式。将列值作为目录来存放数据,就是一个分区。这样查询时使用分区列进行
2023-06-02

linux中DRBD编译安装与配置的示例分析

这篇文章给大家分享的是有关linux中DRBD编译安装与配置的示例分析的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。DRBD介绍 DRBD是一个用软件实现的、无共享的、服务器之间镜像块设备内容的存储复制解决方案。
2023-06-12

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录