我的编程空间,编程开发者的网络收藏夹
学习永远不晚

基于KL散度、JS散度以及交叉熵的对比

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

基于KL散度、JS散度以及交叉熵的对比

在看论文《Detecting Regions of Maximal Divergence for Spatio-Temporal Anomaly Detection》时,文中提到了这三种方法来比较时间序列中不同区域概率分布的差异。

KL散度、JS散度和交叉熵

三者都是用来衡量两个概率分布之间的差异性的指标。不同之处在于它们的数学表达。

对于概率分布P(x)和Q(x)

1)KL散度(Kullback–Leibler divergence)

又称KL距离,相对熵。

当P(x)和Q(x)的相似度越高,KL散度越小。

KL散度主要有两个性质:

(1)不对称性

尽管KL散度从直观上是个度量或距离函数,但它并不是一个真正的度量或者距离,因为它不具有对称性,即D(P||Q)!=D(Q||P)。

(2)非负性

相对熵的值是非负值,即D(P||Q)>0。

2)JS散度(Jensen-Shannon divergence)

JS散度也称JS距离,是KL散度的一种变形。

但是不同于KL主要又两方面:

(1)值域范围

JS散度的值域范围是[0,1],相同则是0,相反为1。相较于KL,对相似度的判别更确切了。

(2)对称性

即 JS(P||Q)=JS(Q||P),从数学表达式中就可以看出。

3)交叉熵(Cross Entropy)

在神经网络中,交叉熵可以作为损失函数,因为它可以衡量P和Q的相似性。

交叉熵和相对熵的关系:

以上都是基于离散分布的概率,如果是连续的数据,则需要对数据进行Probability Density Estimate来确定数据的概率分布,就不是求和而是通过求积分的形式进行计算了。

补充:信息熵、交叉熵与KL散度

信息量

在信息论与编码中,信息量,也叫自信息(self-information),是指一个事件所能够带来信息的多少。一般地,这个事件发生的概率越小,其带来的信息量越大。

从编码的角度来看,这个事件发生的概率越大,其编码长度越小,这个事件发生的概率越小,其编码长度就越大。但是编码长度小也是代价的,比如字母'a'用数字‘0'来表示时,为了避免歧义,就不能有其他任何以‘0'开头的编码了。

因此,信息量定义如下:

在这里插入图片描述

信息熵

信息熵是指一个概率分布p的平均信息量,代表着随机变量或系统的不确定性,熵越大,随机变量或系统的不确定性就越大。从编码的角度来看,信息熵是表示一个概率分布p需要的平均编码长度,其可表示为:

在这里插入图片描述

交叉熵

交叉熵是指在给定真实分布q情况下,采用一个猜测的分布p对其进行编码的平均编码长度(或用猜测的分布来编码真实分布得到的信息量)。

交叉熵可以用来衡量真实数据分布于当前分布的相似性,当前分布与真实分布相等时(q=p),交叉熵达到最小值。

其可定义为:

在这里插入图片描述

因此,在很多机器学习算法中都使用交叉熵作为损失函数,交叉熵越小,当前分布与真实分布越接近。此外,相比于均方误差,交叉熵具有以下两个优点:

在LR中,如果用均方误差损失函数,它是一个非凸函数,而使用交叉熵损失函数,它是一个凸函数;

在LR中使用sigmoid激活函数,如果使用均方误差损失函数,在对其求残差时,其表达式与激活函数的导数有关,而sigmoid(如下图所示)的导数在输入值超出[-5,5]范围后将非常小,这会带来梯度消失问题,而使用交叉熵损失函数则能避免这个问题。

在这里插入图片描述

KL散度

KL散度又称相对熵,是衡量两个分布之间的差异性。从编码的角度来看,KL散度可表示为采用猜测分布p得到的平均编码长度与采用真实分布q得到的平均编码长度多出的bit数,其数学表达式可定义为:

在这里插入图片描述

一般地,两个分布越接近,其KL散度越小,最小为0.它具有两个特性:

非负性,即KL散度最小值为0,其详细证明可见[1] ;

非对称性,即Dq(p)不等于Dp(q) ; KL散度与交叉熵之间的关系

在这里,再次盗用[1]的图来形象地表达这两者之间的关系:

在这里插入图片描述

最上方cH(p)为信息熵,表示分布p的平均编码长度/信息量;

中间的Hq(p)表示用分布q表编码分布p所含的信息量或编码长度,简称为交叉熵,其中Hq(p)>=H(p)

;最小方的Dq(p)表示的是q对p的KL距离,衡量了分布q和分布p之间的差异性,其中Dq(p)>=0;

从上图可知,Hq(p) = H(p) + Dq(p)。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

基于KL散度、JS散度以及交叉熵的对比

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录