我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python基于Flask的高校舆情分析,舆情监控可视化系统

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python基于Flask的高校舆情分析,舆情监控可视化系统

目录

一、前言

二、使用Python爬取舆情数据

1.安装requests库

2.分析数据

3.爬取数据

三、通过代理IP提高数据爬取效率

1.获取代理IP

2.使用代理IP

四、使用Flask框架实现舆情监控可视化系统

五、使用MongoDB存储数据

六、总结


一、前言


在当今社会,舆情监控越来越被重视。随着互联网技术的发展,我们从传统媒体渠道、官方报告、调查问卷等方式搜集到的舆情信息,逐渐被网络上的内容所替代。因为网络上的内容传播速度快、及时性强、覆盖范围广,成为了管理者、企业、政府等了解社会大众情绪、掌握市场动向的重要途径。

本文介绍如何基于Flask框架,使用Python语言编写一个高校舆情分析,舆情监控可视化系统。下面主要涉及5个方面:

  1. 如何使用Python爬取舆情数据;
  2. 如何通过代理IP提高数据爬取效率;
  3. 如何使用Flask框架实现舆情监控可视化系统;
  4. 如何使用MongoDB存储数据;
  5. 如何使用ECharts实现数据可视化展示。

二、使用Python爬取舆情数据


爬取舆情数据主要有两种方式,一种是直接使用API接口,通过调用API获取相应的数据。另一种方式是使用Python爬取网站上的数据。

本文介绍的是第二种数据获取方式,以爬取中国大学排名网为例。

1.安装requests库

使用Python爬取网站数据,首先需要安装requests库,requests库是Python中的HTTP客户端库,能够模拟HTTP请求,发送请求、接收响应。使用以下命令进行安装:

!pip install requests
2.分析数据

在爬取数据前,我们需要分析数据。打开中国大学排名网,点击“大学排名”->“全球排名”,网站链接为:http://www.zuihaodaxue.com/ARWU2020.html 。

从网站中我们可以看到展示的数据大致如下:

我们需要获取的数据列为“排名”、“学校名称”、“所在地区”、“总分”。

3.爬取数据

分析完数据之后,我们就可以开始爬取数据。首先,我们需要导入requests库、BeautifulSoup库。

import requestsfrom bs4 import BeautifulSoup

接着,我们需要设置请求头和请求参数,这里我们设置如下:

headers = {    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'}params = {    'from': 'hao360',    'ie': 'utf-8',    'query': 'python'}

其中,headers为请求头,用于告诉服务器我们的身份信息,params为请求参数,表示要搜索“python”关键词。

接着,我们使用requests库发送请求,获取网页内容,并解析所需的数据。

url = 'http://www.zuihaodaxue.com/ARWU2020.html'response = requests.get(url, headers=headers)response.encoding = response.apparent_encodingsoup = BeautifulSoup(response.text, 'html.parser')all_university = soup.findAll('tr', {'class': 'bgfd'})for university in all_university:    rank = university.find('td', {'align': 'center'}).getText()    name = university.find('a').getText()    region = university.find('div', {'style': 'padding-left:10px;'}).getText().strip()    score = university.findAll('td', {'align': 'center'})[-1].getText()    print(rank, name, region, score)

这样,我们就可以获取到所有大学的排名、学校名称、所在地区、总分数据。

不过需要注意,如果直接爬取网站,可能会被封IP,下一节会介绍如何通过代理IP提高数据爬取效率。

三、通过代理IP提高数据爬取效率

当我们爬取数据时,如果频繁访问同一个网站,可能会被检测到,从而导致IP被封,无法正常访问。这时候,我们可以使用代理IP来避免这个问题,使用代理IP进行数据爬取,可以更好地保护我们的真实IP,达到更好的效果。

1.获取代理IP

在互联网上有很多代理IP提供商,我们可以通过购买代理IP解决被封IP的问题。这里,我们使用的是免费的站大爷代理ip(https://www.zdaye.com/)提供的免费IP。

在站大爷代理ip网站上,我们可以获得如下信息:

  • IP地址
  • 端口号
  • 区域
  • 匿名度
  • 类型
  • 存活时间
  • 验证时间

我们需要使用的是IP地址和端口号,将它们加入到请求头中,即可使用代理IP进行数据爬取。

2.使用代理IP

使用代理IP的方式非常简单,只需要将代理IP加入到请求头中即可。例如,以下代码使用站大爷代理提供的代理IP进行数据爬取:

import requestsurl = 'http://www.zuihaodaxue.com/ARWU2020.html'proxies = {'http': 'http://111.177.190.36:9999', 'https': 'https://111.177.190.36:9999'}headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'}response = requests.get(url, headers=headers, proxies=proxies)print(response.text)

这里我们设置了一个代理IP,格式为http://IP:port。在发送请求时,通过proxies参数将代理IP加入到请求头中,即可使用代理IP进行数据爬取。

四、使用Flask框架实现舆情监控可视化系统

Flask是一个轻量级的Python Web框架,用于编写基于Web的应用程序。它非常适合小型应用程序和简单的Web服务,同时也可以作为基于大型应用程序的核心。

Flask框架包含了请求分发、模板渲染、数据存取等功能,非常适合开发Web应用程序和API。

在使用Flask框架搭建舆情监控可视化系统时,我们需要安装Flask和pymongo(用于连接MongoDB数据库)库,并使用以下代码创建Flask应用程序:

import jsonfrom flask import Flask, render_templatefrom pymongo import MongoClientapp = Flask(__name__)@app.route('/')def index():    client = MongoClient('localhost', 27017)    db = client['university']    collection = db['ARWU']    data_list = []    for data in collection.find():        del data['_id']        data_list.append(data)    return render_template('index.html', data_list=json.dumps(data_list, ensure_ascii=False))if __name__ == '__main__':    app.run()

其中,localhost代表MongoDB数据库所在的主机名,27017代表MongoDB数据库的端口号。此外,我们也可以使用request库获取前端传输来的数据,例如:

from flask import request@app.route('/api/search', methods=['GET'])def search():    keyword = request.args.get('keyword')    client = MongoClient('localhost', 27017)    db = client['university']    collection = db['ARWU']    data_list = []    for data in collection.find({'name': {'$regex': keyword}}):        del data['_id']        data_list.append(data)    return json.dumps(data_list, ensure_ascii=False)

在使用Flask框架时,我们需要创建一个templates文件夹,用于存放html文件,如下所示:![templates](https://CS0waW1nLmNvbS9BdWxuZXdzL2RlZmF1bHRfc3RvcmUuanBn)

在templates文件夹中,我们需要创建一个index.html文件,用于显示数据。具体代码如下:

        中国大学排名        

这里,我们使用了ECharts库(https://echarts.apache.org/)来实现数据可视化展示。最后,在命令行中运行app.py文件,即可启动Flask应用程序。

五、使用MongoDB存储数据

在本例中,我们使用MongoDB作为数据存储方式。MongoDB是一种非关系型数据库,与关系型数据库相比,MongoDB更加灵活、扩展性更好、支持海量数据存储等特点。

在Python中,我们可以使用pymongo库来进行MongoDB的连接和操作。具体代码如下:

from pymongo import MongoClientclient = MongoClient('localhost', 27017)db = client['university']collection = db['ARWU']data = {'rank': '1', 'name': 'Harvard University', 'region': 'USA', 'score': '100'}collection.insert_one(data)result = collection.find({'region': 'USA'})for data in result:    print(data)

在上述代码中,我们首先连接MongoDB,并选择要操作的数据库和集合。然后,我们插入一条数据,并通过find方法查询指定条件的数据。

六、总结

本文介绍了如何使用Python爬取舆情数据,通过使用代理IP提高数据爬取效率。同时,我们还学习了如何使用Flask框架搭建舆情监控可视化系统,以及使用MongoDB存储数据。

这个舆情监控可视化系统还有许多需要完善和改进的地方,例如如何实时更新数据、如何提高数据可视化展示的交互性等等,希望读者能够在此基础上进行更进一步的探索和实践。

 

来源地址:https://blog.csdn.net/wq10_12/article/details/132851558

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python基于Flask的高校舆情分析,舆情监控可视化系统

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

计算机竞赛 基于大数据的社交平台数据爬虫舆情分析可视化系统

文章目录 0 前言1 课题背景2 实现效果**实现功能****可视化统计****web模块界面展示**3 LDA模型 4 情感分析方法**预处理**特征提取特征选择分类器选择实验 5 部分核心代码6 最后 0 前言 &#
2023-08-30

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录