我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python利用ROI进行图像合成的问题小结

短信预约 信息系统项目管理师 报名、考试、查分时间动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python利用ROI进行图像合成的问题小结

之前使用seamlessClone来合成图片,但发现在两张图片的交集部分会出现一些小问题……

需求:

假设现在有一张图片(模板)中存在两个空格可以用来填照片(如下图所示):

在这里插入图片描述

图中,蓝色的圆圈和黄色的圆圈为需要替换的内容,其余部分可以视为一张png图片,且通过PS可知蓝圆黄圆的具体坐标,需要将下方的两张图片合成到上方的位置中:

在这里插入图片描述

ROI合成圆形区域


def input_circle_img(img, file_path, img_part_name, x, y, r):
    for file in os.listdir(file_path):
        if img_part_name in file:
            path = file_path + "\\" + file
            class="lazy" data-src = cv_imread(path)
            class="lazy" data-src = cv.resize(class="lazy" data-src, (r * 2 + 4, r * 2 + 4))
            h, w, ch = class="lazy" data-src.shape
            mask = np.zeros(class="lazy" data-src.shape[:2], dtype=np.uint8)
            mask = cv.circle(mask, (r + 1, r + 1), r, (255, 255, 255), -1)
            imgROI = img[(y - r):(y + r), (x - r):(x + r)]
            mask = mask/255.0
            a =  mask[..., None]
            for row in range(imgROI.shape[0]):
                for col in range(imgROI.shape[1]):
                    if a[row, col]:
                        imgROI[row, col] = class="lazy" data-src[row, col]
参数 说明
img 模板图片对象,即上文中的第一幅图片
file_path 需要替换的图片所在的文件路径,即上文中的1_测试.jpg和2_测试.jpg所在的文件夹路径
img_part_name 即需要替换的图片的(部分)文件名,比如我想换的是“1_测试.jpg”,则此参数可以为“1_”也可以为全名~(需要注意的是:填写的字符串尽量为文件夹中唯一的标识符,例如填“_测试”则可能导致想要的文件被其它图片所覆盖)
x 图片中心在模板中的横向位置(与模板左侧的距离)
y 图片中心在模板中的纵向位置(与模板上侧的距离)
r 图片出于模板中的实际半径

之所以+4是因为之前利用seamlessClone时边缘会收到原模板的影响,改成ROI后懒得该回去了,不加应该也没什么问题~


def export_comp_img(path):
    print("[START] export_comp_img ...")
    for file_path in os.listdir(path):
        file_path = path + "\\" + file_path
        # 创建画布方法,就是利用np.zeros,与本文无关就不放啦~
        img = create_img(2400, 3600)
        input_circle_img(img, file_path, "2_", 1862, 800, 440)
        input_circle_img(img, file_path, "1_", 1247, 558, 315)
        # input_rect_img(img, file_path, "3_", (0, 2202), (2400, 2944))
        # 保存图片方法,就是利用imencode,与本文无关就不放啦~
        save_img(img, file_path)

不出意外的话应该就可以得到下面的这张图片啦!~

在这里插入图片描述

然后再把模板的那张PNG图片盖到最上面——可以利用上文中mask的思路,也可以放到PS里面合成~这里一方面我需要在PS中进行后续的一些操作,另一方面也需要观察图片边缘的处理效果,因而选择了后者。

在这里插入图片描述

和模板里的位置完美对齐!~
PS:如果是除圆以外的不规则图形的话,可以通过改变mask实现——最粗暴的便是加载一张mask图片~
而若是单纯的矩形选区的话则无视mask即可~
至此完结!~下面是一些无关紧要的补充……

ROI合成矩形区域


def input_rect_img(img, file_path, img_part_name, start_point, end_point):
    for file in os.listdir(file_path):
        if img_part_name in file:
            path = file_path + "\\" + file
            class="lazy" data-src = cv_imread(path)
            h = end_point[1] - start_point[1]
            w = end_point[0] - start_point[0]
            class="lazy" data-src = cv.resize(class="lazy" data-src, (w, h))
            imgROI = img[start_point[1]:(start_point[1] + h),start_point[0]:(start_point[0] + w)]
            for row in range(imgROI.shape[0]):
                for col in range(imgROI.shape[1]):
                    imgROI[row, col] = class="lazy" data-src[row, col]

seamlessClone合成圆形区域

值得一提的是,一开始我用的是seamlessClone方法,但尝试了三种模式效果均不理想:


def input_circle_img_seamlessClone(img, file_path, img_part_name, x, y, r):
    for file in os.listdir(file_path):
        if img_part_name in file:
            path = file_path + "\\" + file
            class="lazy" data-src = cv_imread(path)
            class="lazy" data-src = cv.resize(class="lazy" data-src, (r * 2 + 4, r * 2 + 4))
            h, w, ch = class="lazy" data-src.shape
            mask = np.zeros(class="lazy" data-src.shape[:2], dtype=np.uint8)
            mask = cv.circle(mask, (r + 1, r + 1), r, (255, 255, 255), -1)
            center = (x, y)
            output = cv.seamlessClone(class="lazy" data-src, img, mask, center, cv.MIXED_CLONE)
            return output

MIXED_CLONE

在这里插入图片描述

NORMAL_CLONE

在这里插入图片描述

MONOCHROME_TRANSFER

在这里插入图片描述

NORMAL_CLONEMIXED_CLONE的区别主要看的是两个圆的交界处,但这两种方法的边缘都会有一个过渡的处理,不太适合套模板的时候用……

到此这篇关于Python利用ROI进行图像合成的文章就介绍到这了,更多相关Python图像合成内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python利用ROI进行图像合成的问题小结

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python利用ROI进行图像合成的问题小结

之前使用seamlessClone来合成图片,但发现在两张图片的交集部分会出现一些小问题…… 需求: 假设现在有一张图片(模板)中存在两个空格可以用来填照片(如下图所示):图中,蓝色的圆圈和黄色的圆圈为需要替换的内容,其余部分可以视为一张p
2022-06-02

Python如何利用ROI进行图像合成

本篇内容介绍了“Python如何利用ROI进行图像合成”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!之前使用seamlessClone来合成
2023-06-20

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录