我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python编程matplotlib交互绘制Julia集示例解析

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python编程matplotlib交互绘制Julia集示例解析

所谓Julia集就是类似下面的美妙的图案

在这里插入图片描述

Julia集

在这里插入图片描述

特别地,当 c = z的初始值时,符合收敛条件的 z 的便构成大名鼎鼎的Mandelbrot集

Mandelbrot集

在上图中,颜色表示该点的发散速度,可以理解为开始发散时迭代的次数。其生成代码也非常简单:


#mbrot.py
import numpy as np
import time
import pyplotlib.pyplot as plt
#生成z坐标,axis为起始位置,nx,ny为x向和y向的格点个数
def genZ(axis,nx,ny):
    x0,x1,y0,y1 = axis
    x = np.linspace(x0,x1,nx)
    y = np.linspace(y0,y1,ny)
    real, img = np.meshgrid(x,y)
    z = real + img*1j
    return z
#获取Julia集,n为迭代次数,m为判定发散点,大于1即可
def getJulia(z,c,n,m=2):
    t = time.time()
    c = np.zeros_like(z)+c
    out = abs(z)
    for i in range(n):
        absz = abs(z)
        z[absz>m]=0		#对开始发散的点置零
        c[absz>m]=0		
        out[absz>m]=i	#记录发散点的发散速度
        z = z*z + c
    print("time:",time.time()-t)
    return out
if __name__ == "__main__":
    axis = np.array([-2,1,-1.5,1.5])
    z0 = genZ(axis,500,500)
    mBrot = getJulia(z0,z0,50)
    plt.imshow(mBrot, cmap=cm.jet, extent=axis)
    plt.gca().set_axis_off()
    plt.show()

matplotlib绑定事件

下面希望实现点击Mandelbrot集中的一点,生成相应的Julia集。
在mpl中,事件绑定函数mpl_connect被封装在cavnas类中,调用格式为

canvas.mpl_connect('str', func)

其中func事件函数,字符串为被传入事件函数的事件标识,如下所列,望文生义即可


'button_press_event'
'button_release_event'
'draw_event'
'key_press_event'
'key_release_event'
'motion_notify_event'
'pick_event'
'resize_event'
'scroll_event'
'figure_enter_event'
'figure_leave_event'
'axes_enter_event'
'axes_leave_event'
'close_event'

简单起见,可以先检测一下鼠标点击事件'button_press_event',对此我们需要定义一个事件函数,并将上面的入口函数稍加修改:


def test(evt):
    print(evt.xdata)	#xdata即x方向的坐标
if __name__ == "__main__":
    axis = np.array([-2,1,-1.5,1.5])
    z0 = genZ(axis,500,500)
    mBrot = getJulia(z0,z0,50)
    fig, ax = plt.subplots()
    fig.canvas.mpl_connect('button_press_event', test)#调用事件函数
    plt.imshow(mBrot, cmap=cm.jet, extent=axis)
    plt.gca().set_axis_off()
    plt.show()	

于是点击imshow()出来的图片,即可返回相应的x坐标。


python mbrot.py
time: 0.47572827339172363
-0.8652597402597402
-0.7840909090909087
-0.18344155844155807
0.23051948051948123
0.8149350649350655

缩放

那么生成Julia集只需要重新调用一次getJulia这个函数即可。
Mandelbrot集的分形特征意味着我们所生成的图片可以无限放大,但是mpl自带的放大工具并不会重新生成数据,所以是虚假的放大。因此需要重新绑定放大操作,其思路是,当右键点击(‘button_press_event')时,记录此时的坐标,当右键释(‘button_release_event')放时重新绘制图片,为了防止与左键冲突,所以在点击所对应的事件函数中加入左右键判断。

其结果如图

在这里插入图片描述

此外,还可以绑定鼠标滚轮,实现Mandelbrot集在该点的真实缩放,代码如下


import matplotlib.pyplot as plt
import numpy as np
from matplotlib import cm
import matplotlib.backend_bases as mbb
import time
class MandelBrot():
    def __init__(self,x0,x1,y0,y1,n):
        self.oriAxis = np.array([x0,x1,y0,y1])        	#初始坐标
        self.axis = self.oriAxis
        self.nx,self.ny,self.nMax = n,n,n               #x,y方向的网格划分个数
        self.nIter = 100                                #迭代次数
        self.n0 = 0                                     #预迭代次数
        self.z = genZ(self.oriAxis,self.nx,self.ny)
        self.DrawMandelbrot()
    def DrawMandelbrot(self):
        mBrot = getJulia(self.z,self.z,self.nIter)       
        self.fig, ax = plt.subplots()
        plt.imshow(mBrot, cmap=cm.jet, extent=self.axis)
        plt.gca().set_axis_off()        
        self.fig.canvas.mpl_disconnect(self.fig.canvas.manager.key_press_handler_id)
        self.fig.canvas.mpl_connect('button_press_event', self.OnMouse)
        self.fig.canvas.mpl_connect('button_release_event', self.OnRelease)
        self.fig.canvas.mpl_connect('scroll_event', self.OnScroll)       
        plt.show()
    def DrawJulia(self,c0):
        z = genZ([-2,2,-2,2],800,800)
        julia = getJulia(z,c0,self.nIter)        
        jFig,jAx = plt.subplots()
        plt.cla()
        plt.imshow(julia, cmap=cm.jet, extent=self.axis)
        plt.gca().set_axis_off()
        plt.show()
        jFig.canvas.draw_idle()	
	#滚轮缩放
    def OnScroll(self,evt):
        x0,y0 = evt.xdata,evt.ydata
        if evt.button == "up":
            self.axis = (self.axis+[x0,x0,y0,y0])/2
        elif evt.button == 'down':
            self.axis = 2*self.axis-[x0,x0,y0,y0]
        z = genZ(self.axis,self.nx,self.ny)
        mBrot = getJulia(z,z,self.nIter)
        plt.cla()
        plt.imshow(mBrot, cmap=cm.jet, extent=self.axis)
        plt.gca().set_axis_off()        
        mBrot[mBrot<1]==self.n0+self.nIter
        self.n0 = int(np.min(mBrot))
        self.fig.canvas.draw_idle()
        pass
    def OnMouse(self, evt):
        self.xStart = evt.xdata
        self.yStart = evt.ydata
        self.fig.canvas.draw_idle()    
    def OnRelease(self,evt):
        x0,y0,x1,y1 = self.xStart,self.yStart,evt.xdata,evt.ydata
        if evt.button == mbb.MouseButton.LEFT:
            self.DrawJulia(x1+y1*1j)		#如果释放的是左键,那么就绘制Julia集并返回
            return
        #右键拖动,可以对Mandelbrot集进行真实的放大
        self.axis = np.array([min(x0,x1),max(x0,x1),
                             min(y0,y1),max(y0,y1)])        
        nxny = self.axis[[1,3]]-self.axis[[0,2]]
        self.nx,self.ny = (nxny/max(nxny)*self.nMax).astype(int)
        z = genZ(self.axis,self.nx,self.ny)
        n = 100     #n为迭代次数
        mBrot = getJulia(z,z,n)
        plt.cla()
        plt.imshow(mBrot, cmap=cm.jet, extent=self.axis)
        plt.gca().set_axis_off()        
        mBrot[mBrot<1]==self.n0+n
        self.n0 = int(np.min(mBrot))
        self.fig.canvas.draw_idle()
def genZ(axis,nx,ny):
    x0,x1,y0,y1 = axis
    x = np.linspace(x0,x1,nx)
    y = np.linspace(y0,y1,ny)
    real, img = np.meshgrid(x,y)
    z = real + img*1j
    return z
def getJulia(z,c,n,n0=0,m=2):
    t = time.time()
    c = np.zeros_like(z)+c
    out = abs(z)
    for _ in range(n0):
        z = z*z + c
    for i in range(n0,n0+n):
        absz = abs(z)
        z[absz>m]=0
        c[absz>m]=0
        out[absz>m]=i
        z = z*z + c
    print("time:",time.time()-t)
    return out
if __name__ == "__main__":
    x,y = 0,0
    brot = MandelBrot(-2,1,-1.5,1.5,1000)

以上就是python编程matplotlib交互绘制Julia集示例解析的详细内容,更多关于matplotlib交互绘制Julia集的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python编程matplotlib交互绘制Julia集示例解析

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录