我的编程空间,编程开发者的网络收藏夹
学习永远不晚

pandas的排序、分组groupby及cumsum累计求和的方法

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

pandas的排序、分组groupby及cumsum累计求和的方法

这篇文章主要介绍了pandas的排序、分组groupby及cumsum累计求和的方法的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇pandas的排序、分组groupby及cumsum累计求和的方法文章都会有所收获,下面我们一起来看看吧。

生成一列sum_age 对age 进行累加

df['sum_age'] = df['age'].cumsum()print(df)

pandas的排序、分组groupby及cumsum累计求和的方法

生成一列sum_age_new 按照 gender和is_good 对age进行累加

df['sum_age_new'] = df.groupby(['gender','is_good'])['age'].cumsum()print(df)

pandas的排序、分组groupby及cumsum累计求和的方法

 

根据不同的性别对年龄进行 等级 排序

df['rank_g'] = df.groupby(['gender'])['age'].rank()print(df)

pandas的排序、分组groupby及cumsum累计求和的方法

这里的 rank( ) 即 'rank_g' ,并不是按照1、2、3、4、、依次排

按照官方文档的意思,该函数是沿着某个轴来计算数值数据等级(1到n)。默认情况下,为相等的值分配同一个等级,该等级是这些值的等级的平均值。

例子:

import pandas as pdobj = pd.Series([7,-5,7,4,2,0,4])print(obj.rank())

代码对 [7, -5, 7, 4, 2, 0, 4] 进行从小到大地排序,很明显地,可以排成 [-5, 0, 2 ,4, 4, 7, 7],数值7有第6和第7两个位置,那应该排序应该排到第几级?根据官方文档,取平均值,(6+7)/2=6.5,所以两个7的等级都为6.5,同理可得两个4的等级都为(4+5)/2=4.5。

输出:

0    6.5
1    1.0
2    6.5
3    4.5
4    3.0
5    2.0
6    4.5
dtype: float64

对数据排序之后,分组,并累计求和

# 对Start Time进行排序,Connection Type分组,temp进行累计求和cumsumwsw_1 = wsw.sort_values(['Start Time'])wsw_1.loc[:, 'Connection Number'] = wsw_1.groupby(['Connection Type'])['temp'].cumsum()

这里如果不对start time排序,Connection Number不会按时间顺序,统计drilling、tripping 的number数

pandas的排序、分组groupby及cumsum累计求和的方法

pandas分组排序功能

在一个班级里,学生考试科目有语文、数学、英语,分别有对应的成绩。

现在,想要列出每个科目班级的前五名的情况,要求包含科目、姓名、成绩、名次。

通过以下代码实现:

import pandas as pda=['小红','小绿','小蓝','小白','小青','小紫','小粉','小傻','小红','小绿','小蓝','小白','小青','小紫','小粉','小傻','小红','小绿','小蓝','小白','小青','小紫','小粉','小傻']b=['语文','语文','语文','语文','语文','语文','语文','语文','数学','数学','数学','数学','数学','数学','数学','数学','英语','英语','英语','英语','英语','英语','英语','英语']c=[97,65,23,43,67,23,55,98,56,45,67,78,98,45,87,65,67,23,55,98,56,45,67,78]len(a),len(b),len(c)df=pd.DataFrame({'name':a,'kemu':b,'score':c})df2=df.sort_values(['kemu','score','name'], ascending=[1, 0,1])df2['rn']=df2.groupby(['kemu']).rank(method='first',ascending =0)['score']df2[df2['rn']<=5]''''

关于“pandas的排序、分组groupby及cumsum累计求和的方法”这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对“pandas的排序、分组groupby及cumsum累计求和的方法”知识都有一定的了解,大家如果还想学习更多知识,欢迎关注编程网行业资讯频道。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

pandas的排序、分组groupby及cumsum累计求和的方法

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

pandas的排序、分组groupby及cumsum累计求和的方法

这篇文章主要介绍了pandas的排序、分组groupby及cumsum累计求和的方法的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇pandas的排序、分组groupby及cumsum累计求和的方法文章都会有所收
2023-06-30

pandas中groupby分组对象的组内排序解决方案有哪些

这篇文章给大家分享的是有关pandas中groupby分组对象的组内排序解决方案有哪些的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。问题:根据数据某列进行分组,选择其中另一列大小top-K的的所在行数据解析:求解
2023-06-14

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录