我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python 使用pandas同时对多列进行赋值

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python 使用pandas同时对多列进行赋值

如dataframe


 data1['月份']=int(month) #加入月份和企业名称
 data1['企业']=parmentname

可以增加单列,并赋值,如果想同时对多列进行赋值


data1['月份','企业']=int(month) , parmentname   #加入月份和企业名称

会出错

ValueError: Length of values does not match length of index


data[['合计','平均']]='数据','月份'

类似这样的,也无效

KeyError: “None of [Index([‘合计', ‘平均'], dtype=‘object')] are in the [columns]”

只有下例中:


import pandas as pd
chengji=[[100,95,100,99],[90,98,99,100],[88,95,98,88],[99,98,97,87],[96.5,90,96,85],[94,94,93,91],[91, 99, 92, 87], [85, 88, 85, 90], [90, 92, 99, 88], [90, 88, 89, 81], [85, 89, 89, 82], [95, 87, 86, 88], [90, 97, 97, 98], [80, 92, 89, 98], [80, 98, 85, 81], [98, 88, 95, 92]]
data=pd.DataFrame(chengji,columns=['语文','英语','数学','政治'])
print (data)
# data1=data[['数学','语文','英语','政治']]    #排序
# data1=data1.reset_index(drop=True)   #序列重建
# data1.index.names=['序号']     #序列重命名
# data1.index=data1.index+1    #序列从1开始
# print (data1)
data=pd.DataFrame(chengji,columns=['语文','英语','数学','政治'],index=[i for i in range(1,len(chengji)+1)])
print (data)
data[['合计','平均']]=data.apply(lambda x: (x.sum(), x.sum()/4),axis=1,result_type='expand')
print (data[:])
data=pd.DataFrame(chengji,columns=['语文','英语','数学','政治'],index=[i for i in range(1,len(chengji)+1)])
print (data)
data[['合计','平均']]=data.apply(lambda x:('数据','月份'),axis=1,result_type='expand')
print (data[:])

应用apply 并设置result_type=‘expand' 参数才可以。

先前的例子,用如下的方法就行了


data1[['月份','企业']]=data1.apply(lambda x:(int(month),parmentname),axis=1,result_type='expand')
  # data1['月份']=int(month)   #加入月份和企业名称
  # data1['企业']=parmentname
  #print (data1)

后记:

如果'月份','企业'列存在,用如下也可,上例中,直接可以创建不存在的列。


data1.lco[:,['月份','企业']]=int(month),parmentname


data1[['月份','企业']]=int(month),parmentname

今天又遇到一个从某列截取字符串长度写到另一列的,也一并写到这里:

货品列在原表中无,取货品代码的前12位。


totaldata = totaldata.reset_index(drop=False)
totaldata['货品'] = totaldata['货品代码'].apply(lambda x:x[:12])

后记:2020.5.17又遇到想新增两列并赋值的问题


import numpy as np
import pandas as pd
from pandas import Series
 
chengji = [['N', 95, 0], ['N', 100, 88], ['N', 88, 100], ['N', 66, 0]]
data = pd.DataFrame(chengji, columns=['p', 'x', 'g'])
data[['序号','列名']]=data[['p','x']] #pd.DataFrame(data[['p','x']])# .apply(lambda x : x )
print(data)

补充:pandas 的apply返回多列,并赋值

代码如下:


import pandas as pd
df_tmp = pd.DataFrame([
 {"a":"data1", "cnt":100},{"a":"data2", "cnt":200},
])
df_tmp
a cnt
data1 100
data2 200

方法一:使用apply 的参数result_type 来处理


def formatrow(row):
 a = row["a"] + str(row["cnt"])
 b = str(row["cnt"]) + row["a"]
 return a, b 
 
df_tmp[["fomat1", "format2"]] = df_tmp.apply(formatrow, axis=1, result_type="expand")
df_tmp
a cnt fomat1 format2
data1 100 data1100 100data1
data2 200 data2200 200data2

方法二:使用zip打包返回结果来处理


df_tmp["fomat1-1"], df_tmp["format2-2"] = zip(*df_tmp.apply(formatrow, axis=1))
df_tmp
a cnt fomat1 format2 fomat1-1 format2-2
data1 100 data1100 100data1 data1100 100data1
data2 200 data2200 200data2 data2200 200data2

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。如有错误或未考虑完全的地方,望不吝赐教。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python 使用pandas同时对多列进行赋值

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python 如何用pandas同时对多列进行赋值

本篇内容主要讲解“python 如何用pandas同时对多列进行赋值”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“python 如何用pandas同时对多列进行赋值”吧!如dataframe d
2023-06-14

Python如何使用三元运算符进行条件赋值

本篇内容介绍了“Python如何使用三元运算符进行条件赋值”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!技巧1 就地交换两个数字Python
2023-06-29

使用Python怎么对时间序列进行分解和预测

使用Python怎么对时间序列进行分解和预测?针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。什么是时间序列?顾名思义,时间序列是按照固定时间间隔记录的数据集。换句话说,以时间
2023-06-06

使用Python的sorted()函数对列表进行排序

使用Python的sorted()函数对列表进行排序Python是一种功能强大的编程语言,提供了许多内置的函数和方法来帮助开发人员处理不同的任务。其中一个非常有用的函数是sorted()函数,它可以用于对列表进行排序。sorted()函数接
使用Python的sorted()函数对列表进行排序
2023-11-18

怎么在python中使用Pandas对MySQL数据库进行读写

本篇文章给大家分享的是有关怎么在python中使用Pandas对MySQL数据库进行读写,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。1、read_sql_query 读取 m
2023-06-14

使用python怎么对列表进行永久性排序

这篇文章给大家介绍使用python怎么对列表进行永久性排序,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。python的五大特点是什么python的五大特点:1.简单易学,开发程序时,专注的是解决问题,而不是搞明白语言本
2023-06-14

怎么在python中使用sorted对键和值进行排序

今天就跟大家聊聊有关怎么在python中使用sorted对键和值进行排序,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。Python的优点有哪些1、简单易用,与C/C++、Java、C
2023-06-14

如何使用Python的slice()函数对列表进行切片

如何使用Python的slice()函数对列表进行切片Python中的slice()函数是一个灵活且强大的工具,可以用于对列表进行切片操作。通过切片,我们可以从一个列表中截取出其中的一部分元素,并将其作为新的列表进行使用。本文将介绍如何使用
如何使用Python的slice()函数对列表进行切片
2023-11-18

如何使用MPI_Reduce对来自不同处理器组的不同值进行独立求和

使用MPI_Reduce函数可以对来自不同处理器组的不同值进行独立求和。以下是使用MPI_Reduce进行求和的步骤:1. 导入MPI库:```c++#include ```2. 初始化MPI:```c++MPI_Init(NULL, NU
2023-09-27

如何使用Python中的pickle模块进行对象序列化

如何使用Python中的pickle模块进行对象序列化概述:在Python编程中,我们经常需要将数据保存到文件或通过网络传输。而对象序列化是一种将对象转化为可存储或传输的格式的过程,而pickle模块正是Python中一种常用的序列化模块。
2023-10-22

如何使用Python中的pickle和JSON进行对象序列化和反序列化

如何使用Python中的pickle和JSON进行对象序列化和反序列化Python是一种简单而强大的编程语言,其内置了许多有用的库和模块,使开发人员能够快速进行各种任务。其中,pickle和JSON是两个常用的模块,用于对象序列化和反序列化
2023-10-22

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录