我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Pandas实现数据拼接的操作方法详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Pandas实现数据拼接的操作方法详解

数据科学领域日常使用 Python 处理大规模数据集的时候经常需要使用到合并、链接的方式进行数据集的整合,其中应用的数据类型包括 Series 和 DataFrame,可以使用的方法也很多,比如本文中介绍的 .merge()、 .join() 和 .concat() 三种方法,进行拼接处理后的数据集可以发挥最大的用途。

merge 操作

.merge() 方法是用于组合通用列或索引上的数据,这个方法有点类似于 MySQL 中的 join 操作,可以实现左拼接、右拼接、全连接等操作。

通过关键字的索引进行拼接,实现多对一、一对多、多对多(笛卡尔乘积)连接。

merge 中参数解释:

  • how:定义合并方式,选择参数有 『inner』,『outer』, 『left’』,『right』。
  • on:定义2个 DataFrame 中都必须包含的列用于连接(索引键)。
  • left_on 和 right_on:指定要合并的左侧或右侧对象中存在的列或索引。
  • left_index 和 right_index:默认为 False,设置为以索引列作为合并基准。
  • suffixes:字符串元组,用于附加到不是合并键的相同列名。

merge 拼接方式

一张图就能看明白不同关键字参数 merger 的方式。

merge 举例

数据读取

我们要进行势力所属和人物直接关系的拼接操作,读取的数据包括下面的2个列表,并将 人物历史登入数据 中没有势力的数据剔除。

import pandas as pd
country  = pd.read_excel("Romance of the Three Kingdoms 13/势力列表.xlsx")
people = pd.read_excel("Romance of the Three Kingdoms 13/人物历史登入数据.xlsx")

# 剔除不包含的势力数据,即武将在野的状态
people = people[people["勢力"]!="-"]

country.head()

people.head()

内部联接

使用 merge 默认参数可以直接进行内部连接,匹配两个DataFrame交集的结果。

将人物和所属势力进行一个拼接,这里我们取的是这个人物最终归属的势力,即改人物数据聚合后的最后一条数据信息。

people_new = people.groupby('名前').nth(-1)
people_new["名前"] = people_new.index
people_new.reset_index(drop=True,inplace=True)
people_new

merge 中DataFrame的顺序决定了拼接结果的顺序。

inner_merged_total = pd.merge(country,people_new,on=["勢力"])
inner_merged_total.head()

inner_merged_total = pd.merge(people_new,country,on=["勢力"])
inner_merged_total.head()

外连接

外连接(也称为完全外连接)中,来自两个 DataFrame 的所有行都将出现在新的 DataFrame 中。

本质上对于数据全的 df_A 和包含的 df_B 进行 outer 拼接,相当于 pd.merge(df_A ,df_B,on=[“key”])

outer_merged = pd.merge(people_new,country,how="outer",on=["勢力"])
outer_merged.head()

如果我们不剔除在野武将的数据的话会发现是整张表单进行拼接。

country  = pd.read_excel("Romance of the Three Kingdoms 13/势力列表.xlsx")
people = pd.read_excel("Romance of the Three Kingdoms 13/人物历史登入数据.xlsx")
outer_merged = pd.merge(people_new,country,how="outer",on=["勢力"])
outer_merged

左连接

新合并的 DataFrame 与左侧 DataFrame 中的所有行一起保留(即merge中的第一个dataframe),同时丢弃右侧 DataFrame 中在左侧 DataFrame 的键列中没有匹配的行。

left_merged = pd.merge(people_new,country,how="left",on=["勢力"])
left_merged

右连接

新合并的 DataFrame 与右侧 DataFrame 中的所有行一起保留(即merge中的第二个dataframe),同时丢弃右侧 DataFrame 中在左侧 DataFrame 的键列中没有匹配的行。

right_merged = pd.merge(people_new,country,how="right",on=["勢力"])
right_merged 

join 操作

join 操作和 merge 很相似,是在列或索引上组合数据,join 相当于指定了 merge 中的第一个 DataFreme 。并且命名冲突的列可以定义后缀进行重新命名。

这个结果和之前的左右 merger 很相似。

join 中参数解释:

  • other:定义要拼接的 DataFrame。
  • on:指定左侧 DataFrame 的可选列或索引名称。如果设置为 None,这是默认 index 连接。
  • how:与 merge 中的 how 具有相同,如果不指定列则使用索引拼接。
  • lsuffix 和 rsuffix:类似 merge() 中的后缀。
  • sort:对生成后的 DataFrame 进行排序。

join 举例

people_new.join(country, lsuffix="left", rsuffix="right")

仅仅是index的横向拼接。

concat 操作

concat 操作起来就比较灵活,可以进行横向的拼接操作,也可以进行纵向的拼接操作。

纵向拼接操作

横拼接操作

concat 中参数解释:

  • objs:要连接的任何数据对象。可以是List,Serices,DataFrame,Dict 等等。
  • axis:连接的轴。默认值为0(行轴),1(纵直)连接。
  • join:类似于 merger 中的 how 参数,只接受值 inner 或 outer 。
  • ignore_index:默认为False。True 为设置新的组合数据集将不会保留 axis 参数中指定的轴中的原始索引值。
  • keys:构建分层索引,用于查询不同的行来自的原始数据集。
  • copy:是否要复制源数据,默认值为True。

concat 举例

我们使用三国的宝物数据来观察,数据 74 行。

import pandas as pd
items  = pd.read_excel("Romance of the Three Kingdoms 13/道具列表.xlsx")
items.head()

横向拼接后,保持数据最大行数 74。

pd.concat([items, items], axis=1)

纵向拼接后,最大行数变成 74 的 2倍。

pd.concat([items, items], axis=0)

append 举例

append 也是 DataFrame 数据进行拼接的有效方式,方式同 concat 的纵向拼接,返回的结果需要对变量重新定义才能生效。

注意下面2个 append 行数的区别

items.append(items)
items

items = items.append(items)
items

到此这篇关于Pandas实现数据拼接的操作方法详解的文章就介绍到这了,更多相关Pandas数据拼接内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Pandas实现数据拼接的操作方法详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python中数据拼接的实现方法

小编给大家分享一下python中数据拼接的实现方法,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!Python主要用来做什么Python主要应用于:1、Web开发;
2023-06-15

pandas如何实现数据的合并与拼接

这篇文章将为大家详细讲解有关pandas如何实现数据的合并与拼接,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。Pandas包的merge、join、concat方法可以完成数据的合并和拼接,merge方法
2023-06-21

Android拼接实现动态对象方法详解

这篇文章主要为大家介绍了Android拼接实现动态对象方法示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-03-01

Python数据分析Pandas Dataframe排序操作的方法

本文小编为大家详细介绍“Python数据分析Pandas Dataframe排序操作的方法”,内容详细,步骤清晰,细节处理妥当,希望这篇“Python数据分析Pandas Dataframe排序操作的方法”文章能帮助大家解决疑惑,下面跟着小
2023-06-30

Mybatis操作多数据源实现的方法

今天小编给大家分享的是Mybatis操作多数据源实现的方法,相信很多人都不太了解,为了让大家更加了解,所以给大家总结了以下内容,一起往下看吧。一定会有所收获的哦。现在有一个Mysql数据源和一个Postgresql数据源,使用Mybatis
2023-07-06

python 实现二维数组的索引、删除、拼接操作

1.数组的索引 我用的是iloc函数。导入数据是data,索引data.iloc[i,j],i代表行,j代表列。如果要索引i行之后的所有行元素,使用data.iloc[i:,j], i行之前的所有行,使用data.iloc[:i,j]。 2
2022-06-02

Node.js实现http请求服务与Mysql数据库操作方法详解

这篇文章主要介绍了Node.js实现http请求服务与Mysql数据库操作方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧
2022-11-13

Pandas数据查询的集中实现方法

本文主要介绍了Pandas数据查询的集中实现方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2023-02-27

django基础之数据库操作方法(详解)

Django 自称是“最适合开发有限期的完美WEB框架”。本文参考《Django web开发指南》,快速搭建一个blog 出来,在中间涉及诸多知识点,这里不会详细说明,如果你是第一次接触Django ,本文会让你在感性上对Django有个认
2022-06-04

SQL Server数据库表格操作方法详解

目录表格的创建代码操作界面操作增删改查增删改查总结表格的创建代码操作-- StudentTwo 库名use StudentTwogo-- table 表-- database 数据库 存放表-- 先判断表是否存在,如果存在先删除再创
SQL Server数据库表格操作方法详解
2024-10-03

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录