C#如何实现简单的二叉查找树
本篇内容介绍了“C#如何实现简单的二叉查找树”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
二叉查找树(Binary Search Tree),或者是一棵空树,或者是具有下列性质的二叉树:
若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
它的左、右子树也分别为二叉排序树。
二叉排序树的查找过程和次优二叉树类似,通常采取二叉链表作为二叉排序树的存储结构。中序遍历二叉排序树可得到一个关键字的有序序列,一个无序序列可以通过构造一棵二叉排序树变成一个有序序列,构造树的过程即为对无序序列进行排序的过程。每次插入的新的结点都是二叉排序树上新的叶子结点,在进行插入操作时,不必移动其它结点,只需改动某个结点的指针,由空变为非空即可。搜索,插入,删除的复杂度等于树高,O(log(n))。
图 1. 三层二叉查找树
二叉排序树典型的用途是实现关联数组,一种常用的定义方式为:
class BiTree<TKey,TValue> where TKey:IComparable{ public TKey Key { get; set; } public TValue Value { get; set; } BiTree<TKey, TValue> Left { get; set; } BiTree<TKey, TValue> Right { get; set; } public BiTree(TKey key,TValue value) { this.Key = key; this.Value = value; }}
二叉排序树的查找算法
在二叉排序树b中查找x的过程为:
若b是空树,则搜索失败,否则:
若x等于b的根结点的数据域之值,则查找成功;否则:
若x小于b的根结点的数据域之值,则搜索左子树;否则:
查找右子树。
public TValue Search(TKey key){ int ret = key.CompareTo(this.Key); if (ret == 0) { return Value; } else { var subTree = ret < 0 ? Left : Right; if (subTree == null) { throw new KeyNotFoundException(); } else { return subTree.Search(key); } }}
在二叉排序树插入结点的算法
一种简单的向一个二叉排序树b中插入一个结点s的算法为:
若b是空树,则将s所指结点作为根结点插入,否则:
若s->data等于b的根结点的数据域之值,则返回,否则:
若s->data小于b的根结点的数据域之值,则把s所指结点插入到左子树中,否则:
把s所指结点插入到右子树中。
public void Insert(TKey key, TValue value){ int ret = key.CompareTo(this.Key); if (ret == 0) { this.Value = value; } else { var subTree = ret < 0 ? Left : Right; if (subTree == null) { subTree = new BiTree<TKey, TValue>(key, value); if (ret < 0) Left = subTree; else Right = subTree; } else { subTree.Insert(key, value); } }}
在二叉排序树删除结点的算法
在二叉排序树删去一个结点,分三种情况讨论:
若*p结点为叶子结点,即PL(左子树)和PR(右子树)均为空树。由于删去叶子结点不破坏整棵树的结构,则只需修改其双亲结点的指针即可。
若*p结点只有左子树PL或右子树PR,此时只要令PL或PR直接成为其双亲结点*f的左子树即可,作此修改也不破坏二叉排序树的特性。
若*p结点的左子树和右子树均不空。在删去*p之后,为保持其它元素之间的相对位置不变,可按中序遍历保持有序进行调整,可以有两种做法:其一是令*p的左子树为*f的左子树,*s为*f左子树的最右下的结点,而*p的右子树为*s的右子树;其二是令*p的直接前驱(或直接后继)替代*p,然后再从二叉排序树中删去它的直接前驱(或直接后继)。
二叉排序树性的遍历
二叉排序树一般采用先根访问,这样能将所有元素按大小排序访问。
public void Visit(Action<TKey, TValue> visitor){ if (Left != null) { Left.Visit(visitor); } visitor(Key, Value); if (Right != null) { Right.Visit(visitor); }}
二叉排序树性能分析
每个结点的Ci为该结点的层次数。最坏情况下,当先后插入的关键字有序时,构成的二叉排序树蜕变为单支树,树的深度为n,其平均查找长度为
(和顺序查找相同),最好的情况是二叉排序树的形态和折半查找的判定树相同,其平均查找长度和log2(n)成正比(O(log2(n)))。
“C#如何实现简单的二叉查找树”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注编程网网站,小编将为大家输出更多高质量的实用文章!
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341