我的编程空间,编程开发者的网络收藏夹
学习永远不晚

pytorch:.detach()、.detach_()的作用和区别

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

pytorch:.detach()、.detach_()的作用和区别

文章目录

pytorch的两个函数:.detach()、.detach_()的作用和区别

当我们在训练神经网络的时候可能希望保持一部分的网络参数不变,只对其中一部分参数进行调整;或者只训练部分分支网络,并不让其梯度对主网络的梯度造成影响,这时候我们就需要使用detach()函数来切断一些分支的反向传播

一、torch.detach()

返回一个新的tensor,从当前计算图中分离下来的,但是仍指向原变量的存放位置,不同之处只是requires_grad为false,得到的这个tensor永远不需要计算其梯度,不具有grad。

使用detach返回的tensor和原始的tensor共同一个内存,即一个修改另一个也会跟着改变。

import torcha = torch.tensor([1., 2., 3.], requires_grad=True)print(a.grad)out = a.sigmoid()out.sum().backward()print(a.grad)"""Nonetensor([0.1966, 0.1050, 0.0452])"""

1.1、当使用detach()分离tensor但是没有更改这个tensor时,并不会影响backward()

import torcha = torch.tensor([1., 2., 3.], requires_grad=True)print(a.grad)out = a.sigmoid()print(out)# 添加detach(),c的requires_grad为Falsec = out.detach()print(c)# 这个时候没有对c进行更改,所以并不会影响backward()out.sum().backward()print(a.grad)

c、out之间的区别是c是没有梯度的,out是有梯度的

1.2、当使用detach()分离tensor,然后这个分离出来的tensor去求导数,会影响backward(),会出现错误

import torcha = torch.tensor([1., 2., 3.], requires_grad=True)print(a.grad)out = a.sigmoid()print(out)# 添加detach(),c的requires_grad为Falsec = out.detach()print(c)# 使用新生成的Variable进行反向传播c.sum().backward()print(a.grad)"""NoneRuntimeError: element 0 of tensors does not require grad and does not have a grad_fn"""

1.3、当使用detach()分离tensor并且更改这个tensor时,即使再对原来的out求导数,会影响backward(),会出现错误

如果此时对c进行了更改,这个更改会被autograd追踪,在对out.sum()进行backward()时也会报错,因为此时的值进行backward()得到的梯度是错误的

import torcha = torch.tensor([1., 2., 3.], requires_grad=True)print(a.grad)out = a.sigmoid()print(out)# 添加detach(),c的requires_grad为Falsec = out.detach()print(c)# 使用inplace函数对其进行修改c.zero_()print(c)print(out)# 这个时候没有对c进行更改,所以并不会影响backward()out.sum().backward()print(a.grad)"""Nonetensor([0.7311, 0.8808, 0.9526], grad_fn=)tensor([0.7311, 0.8808, 0.9526])tensor([0., 0., 0.])tensor([0., 0., 0.], grad_fn=)RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation"""

二、tensor.detach_()

import torcha = torch.tensor([1., 2., 3.], requires_grad=True)b = a + 2print(b)c = b * b * 3print(c)out = c.mean()print(out)out.backward()print(a.grad)"""tensor([3., 4., 5.], grad_fn=)tensor([27., 48., 75.], grad_fn=)tensor(50., grad_fn=)tensor([ 6.,  8., 10.])"""
import torcha = torch.tensor([1., 2., 3.], requires_grad=True)b = a + 2print(b)b=b.detach_()print(b)c = b * b * 3print(c)out = c.mean()print(out)out.backward()print(c.grad)"""tensor([3., 4., 5.], grad_fn=)tensor([3., 4., 5.])tensor([27., 48., 75.])tensor(50.)RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn"""

torch.detach_()将一个tensor从创建它的图中分离,并把它设置成叶子tensor

其实就相当于变量之间的关系本来是x -> m -> y,这里的叶子tensor是x,但是这时候对m进行了m.detach_()操作,其实就是进行了两个操作:

  • 将m的grad_fn的值设置为None,这样m就不会再与前一个节点x观点,这里的关系就会变成x, m -> y,此时的m就变成了叶子结点

  • 然后会将m的requires_grad设置为False,这样对y进行backward()时就不会求m的梯度

总结:其实detach()和detach_()很像,两个的区别就是detach_()是对本身的更改,detach()则是生成了一个新的tensor

比如x -> m -> y中如果对m进行detach(),后面如果反悔想还是对原来的计算图进行操作还是可以的

但是如果是进行了detach_(),那么原来的计算图也发生了变化,就不能反悔了

补充:requires_grad、grad_fn、grad的含义和作用

requires_grad:如果需要为张量计算梯度,则为True,否则为False。我们使用pytorch创建tensor时,可以指定requires_grad为True(默认为False)

grad_fn:grad_fn用来记录变量是怎么来的,方便计算梯度

grad:当执行完backward()之后,通过x.grad查看x的梯度

创建一个tensor并设置requires_grad=True,requires_grad=True说明该变量需要计算梯度

import torchx = torch.ones(2, 2, requires_grad=True)print(x)print(x.grad_fn)"""tensor([[1., 1.],        [1., 1.]], requires_grad=True)None"""y = x + 2print(y)print(y.grad_fn)"""tensor([[3., 3.],        [3., 3.]], grad_fn=)"""

由于x是直接创建的,所以它没有grad_fn,而y是通过一个加法操作创建的,所以y有grad_fn

像x这种直接创建的称为叶子节点,叶子节点对应的grad_fn是None

z = y * y * 3out = z.mean()print(out)"""tensor(27., grad_fn=)"""out.backward()print(x.grad)"""tensor([[4.5000, 4.5000],        [4.5000, 4.5000]])"""

grad在反向传播过程中是累加的(accumulated),这意味着每一次运行反向传播,梯度都会累加之前的梯度,所以一般在反向传播之前把梯度清零

参考

pytorch的两个函数 .detach() .detach_() 的作用和区别

requires_grad,grad_fn,grad的含义及使用

来源地址:https://blog.csdn.net/julac/article/details/129655016

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

pytorch:.detach()、.detach_()的作用和区别

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

C++中thread库join和detach的区别有哪些

本篇内容介绍了“C++中thread库join和detach的区别有哪些”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!线程状态在一个线程的生
2023-06-25

PyTorch中torch.tensor()和torch.to_tensor()的区别

在Pytorch中Tensor和tensor都用于生成新的张量,但二者并不相同,下面这篇文章主要给大家介绍了关于PyTorch中torch.tensor()和torch.to_tensor()区别的相关资料,需要的朋友可以参考下
2023-01-28

PyTorch和TensorFlow的区别是什么

PyTorch和TensorFlow都是流行的深度学习框架,它们之间的一些主要区别包括:动态图 vs 静态图:PyTorch使用动态图,这意味着它在运行时构建计算图,可以更容易地进行调试和动态修改网络结构。而TensorFlow使用静态图,
PyTorch和TensorFlow的区别是什么
2024-03-05

PyTorch中tensor.detach()和tensor.data的区别解析

这篇文章主要介绍了PyTorch中tensor.detach()和tensor.data的区别解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
2023-05-14

PyTorch中Tensor和tensor的区别是什么

这篇文章主要介绍“PyTorch中Tensor和tensor的区别是什么”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“PyTorch中Tensor和tensor的区别是什么”文章能帮助大家解决问题。
2023-07-02

PyTorch中tensor.detach()和tensor.data的区别有哪些

这篇文章主要介绍“PyTorch中tensor.detach()和tensor.data的区别有哪些”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“PyTorch中tensor.detach()和te
2023-07-05

pytorch中.to(device) 和.cuda()的区别有哪些

这篇文章主要介绍了pytorch中.to(device) 和.cuda()的区别有哪些,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。原理.to(device) 可以指定CPU
2023-06-15

break和continue的作用和区别有哪些

今天小编给大家分享一下break和continue的作用和区别有哪些的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。break
2023-07-05

pytorch中Tensor.to(device)和model.to(device)的区别是什么

这篇文章主要介绍了pytorch中Tensor.to(device)和model.to(device)的区别是什么的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇pytorch中Tensor.to(device)
2023-07-02

显卡驱动CUDA 和 pytorch CUDA 之间的区别

本文主要介绍了显卡驱动CUDA 和 pytorch CUDA 之间的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2023-03-19

PyTorch中的LSTM和GRU模块有什么区别

参数数量:LSTM模块通常比GRU模块有更多的参数,因此在训练中需要更多的计算资源和时间。训练时间:由于LSTM模块的参数更多,因此在训练中通常需要更多的时间。训练效果:在某些数据集上,LSTM模块可能会比GRU模块表现更好,但在其他数据集
PyTorch中的LSTM和GRU模块有什么区别
2024-03-05

golang函数类型的作用和区别

go 语言中函数类型定义了函数调用的签名和参数类型,用于定义函数、声明接口和表示回调。函数类型分为普通函数类型和方法类型,分别用于定义普通函数和类型的方法。例如,普通函数类型可用于定义计算两个数字之和的函数,而函数类型也可表示在其他函数内部
golang函数类型的作用和区别
2024-04-28

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录