我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python中交叉验证的方法有哪些

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python中交叉验证的方法有哪些

这篇文章主要介绍“Python中交叉验证的方法有哪些”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python中交叉验证的方法有哪些”文章能帮助大家解决问题。

一、什么是交叉验证?

交叉验证是一种用于估计机器学习模型性能的统计方法,它是一种评估统计分析结果如何推广到独立数据集的方法。

二、它是如何解决过拟合问题的?

在交叉验证中,我们将训练数据生成多个小的训练测试分割,使用这些拆分来调整您的模型。 例如,在标准的 k 折交叉验证中,我们将数据划分为 k 个子集。 然后,我们在 k-1 个子集上迭代训练算法,同时使用剩余的子集作为测试集。 通过这种方式,我们可以在未参与训练的数据上测试我们的模型。

在本文中,我将分享 7 种最常用的交叉验证技术及其优缺点,我还提供了每种技术的代码片段。

下面列出了这些技术方法:

  • HoldOut 交叉验证

  • K-Fold 交叉验证

  • 分层 K-Fold交叉验证

  • Leave P Out 交叉验证

  • 留一交叉验证

  • 蒙特卡洛 (Shuffle-Split)

  • 时间序列(滚动交叉验证)

1、HoldOut 交叉验证

在这种交叉验证技术中,整个数据集被随机划分为训练集和验证集。 根据经验,整个数据集的近 70% 用作训练集,其余 30% 用作验证集。

Python中交叉验证的方法有哪些

优点:

快速执行:因为我们必须将数据集拆分为训练集和验证集一次,并且模型将在训练集上仅构建一次,因此可以快速执行。

缺点:

  • 不适合不平衡数据集:假设我们有一个不平衡数据集,它具有“0”类和“1”类。 假设 80% 的数据属于“0”类,其余 20% 的数据属于“1”类。在训练集大小为 80%,测试数据大小为数据集的 20% 的情况下进行训练-测试分割。 可能会发生“0”类的所有 80% 数据都在训练集中,而“1”类的所有数据都在测试集中。 所以我们的模型不能很好地概括我们的测试数据,因为它之前没有看到过“1”类的数据。

  • 大量数据无法训练模型。

在小数据集的情况下,将保留一部分用于测试模型,其中可能具有我们的模型可能会错过的重要特征,因为它没有对该数据进行训练。

代码片段

from sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_splitfrom sklearn.linear_model import LogisticRegressionfrom sklearn.metrics import accuracy_scoreiris=load_iris()X=iris.dataY=iris.targetprint("Size of Dataset {}".format(len(X)))logreg=LogisticRegression()x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.3,random_state=42)logreg.fit(x_train,y_train)predict=logreg.predict(x_test)print("Accuracy score on training set is {}".format(accuracy_score(logreg.predict(x_train),y_train)))print("Accuracy score on test set is {}".format(accuracy_score(predict,y_test)))

Python中交叉验证的方法有哪些

2、K 折交叉验证

在这种 K 折交叉验证技术中,整个数据集被划分为 K 个相等大小的部分。 每个分区称为一个“折叠”。因此,因为我们有 K 个部分,所以我们称之为 K 折叠。 一折用作验证集,其余 K-1 折用作训练集。

该技术重复 K 次,直到每个折叠用作验证集,其余折叠用作训练集。

模型的最终精度是通过取k-models 验证数据的平均精度来计算的。

Python中交叉验证的方法有哪些

优点:

  • 整个数据集既用作训练集又用作验证集:

缺点:

  • 不用于不平衡的数据集:正如在 HoldOut 交叉验证的情况下所讨论的,在 K-Fold 验证的情况下也可能发生训练集的所有样本都没有样本形式类“1”,并且只有 类“0”。验证集将有一个类“1”的样本。

  • 不适合时间序列数据:对于时间序列数据,样本的顺序很重要。 但是在 K 折交叉验证中,样本是按随机顺序选择的。

代码片段:

from sklearn.datasets import load_irisfrom sklearn.model_selection import cross_val_score,KFoldfrom sklearn.linear_model import LogisticRegressioniris=load_iris()X=iris.dataY=iris.targetlogreg=LogisticRegression()kf=KFold(n_splits=5)score=cross_val_score(logreg,X,Y,cv=kf)print("Cross Validation Scores are {}".format(score))print("Average Cross Validation score :{}".format(score.mean()))

Python中交叉验证的方法有哪些

3、分层 K 折交叉验证

分层 K-Fold 是 K-Fold 交叉验证的增强版本,主要用于不平衡的数据集。 就像 K-fold 一样,整个数据集被分成大小相等的 K-fold。

但是在这种技术中,每个折叠将具有与整个数据集中相同的目标变量实例比率。

Python中交叉验证的方法有哪些

优点:

  • 对于不平衡数据非常有效:分层交叉验证中的每个折叠都会以与整个数据集中相同的比率表示所有类别的数据。

缺点:

  • 不适合时间序列数据:对于时间序列数据,样本的顺序很重要。 但在分层交叉验证中,样本是按随机顺序选择的。

代码片段:

from sklearn.datasets import load_irisfrom sklearn.model_selection import cross_val_score,StratifiedKFoldfrom sklearn.linear_model import LogisticRegressioniris=load_iris()X=iris.dataY=iris.targetlogreg=LogisticRegression()stratifiedkf=StratifiedKFold(n_splits=5)score=cross_val_score(logreg,X,Y,cv=stratifiedkf)print("Cross Validation Scores are {}".format(score))print("Average Cross Validation score :{}".format(score.mean()))

Python中交叉验证的方法有哪些

4、Leave P Out 交叉验证

Leave P Out 交叉验证是一种详尽的交叉验证技术,其中 p 样本用作验证集,剩余的 np 样本用作训练集。

假设我们在数据集中有 100 个样本。 如果我们使用 p=10,那么在每次迭代中,10 个值将用作验证集,其余 90 个样本将用作训练集。

重复这个过程,直到整个数据集在 p-样本和 n-p 训练样本的验证集上被划分。

优点:

  • 所有数据样本都用作训练和验证样本。

缺点:

  • 计算时间长:由于上述技术会不断重复,直到所有样本都用作验证集,因此计算时间会更长。

  • 不适合不平衡数据集:与 K 折交叉验证相同,如果在训练集中我们只有 1 个类的样本,那么我们的模型将无法推广到验证集。

代码片段

from sklearn.model_selection import LeavePOut,cross_val_scorefrom sklearn.datasets import load_irisfrom sklearn.ensemble import RandomForestClassifieriris=load_iris()X=iris.dataY=iris.targetlpo=LeavePOut(p=2)lpo.get_n_splits(X)tree=RandomForestClassifier(n_estimators=10,max_depth=5,n_jobs=-1)score=cross_val_score(tree,X,Y,cv=lpo)print("Cross Validation Scores are {}".format(score))print("Average Cross Validation score :{}".format(score.mean()))

Python中交叉验证的方法有哪些

5、留一交叉验证

留一交叉验证是一种详尽的交叉验证技术,其中 1 个样本点用作验证集,其余 n-1 个样本用作训练集。

假设我们在数据集中有 100 个样本。 然后在每次迭代中,1 个值将用作验证集,其余 99 个样本作为训练集。 因此,重复该过程,直到数据集的每个样本都用作验证点。

它与使用 p=1 的 LeavePOut 交叉验证相同。

Python中交叉验证的方法有哪些

代码片段:

from sklearn.datasets import load_irisfrom sklearn.ensemble import RandomForestClassifierfrom sklearn.model_selection import LeaveOneOut,cross_val_scoreiris=load_iris()X=iris.dataY=iris.targetloo=LeaveOneOut()tree=RandomForestClassifier(n_estimators=10,max_depth=5,n_jobs=-1)score=cross_val_score(tree,X,Y,cv=loo)print("Cross Validation Scores are {}".format(score))print("Average Cross Validation score :{}".format(score.mean()))

Python中交叉验证的方法有哪些

6、蒙特卡罗交叉验证(Shuffle Split)

蒙特卡罗交叉验证,也称为Shuffle Split交叉验证,是一种非常灵活的交叉验证策略。 在这种技术中,数据集被随机划分为训练集和验证集。

我们已经决定了要用作训练集的数据集的百分比和用作验证集的百分比。 如果训练集和验证集大小的增加百分比总和不是 100,则剩余的数据集不会用于训练集或验证集。

假设我们有 100 个样本,其中 60% 的样本用作训练集,20% 的样本用作验证集,那么剩下的 20%( 100-(60+20)) 将不被使用。

这种拆分将重复我们必须指定的“n”次。

Python中交叉验证的方法有哪些

优点:

  • 我们可以自由使用训练和验证集的大小。

  • 我们可以选择重复的次数,而不依赖于重复的折叠次数。

缺点:

  • 可能不会为训练集或验证集选择很少的样本。

  • 不适合不平衡的数据集:在我们定义了训练集和验证集的大小后,所有的样本都是随机选择的,所以训练集可能没有测试中的数据类别 设置,并且该模型将无法概括为看不见的数据。

代码片段:

from sklearn.model_selection import ShuffleSplit,cross_val_scorefrom sklearn.datasets import load_irisfrom sklearn.linear_model import LogisticRegressionlogreg=LogisticRegression()shuffle_split=ShuffleSplit(test_size=0.3,train_size=0.5,n_splits=10)scores=cross_val_score(logreg,iris.data,iris.target,cv=shuffle_split)print("cross Validation scores:n {}".format(scores))print("Average Cross Validation score :{}".format(scores.mean()))

Python中交叉验证的方法有哪些

7、时间序列交叉验证

什么是时间序列数据?

时间序列数据是在不同时间点收集的数据。由于数据点是在相邻时间段收集的,因此观测值之间可能存在相关性。这是区分时间序列数据与横截面数据的特征之一。

在时间序列数据的情况下如何进行交叉验证?

在时间序列数据的情况下,我们不能选择随机样本并将它们分配给训练集或验证集,因为使用未来数据中的值来预测过去数据的值是没有意义的。

由于数据的顺序对于时间序列相关问题非常重要,所以我们根据时间将数据拆分为训练集和验证集,也称为“前向链”方法或滚动交叉验证。

我们从一小部分数据作为训练集开始。基于该集合,我们预测稍后的数据点,然后检查准确性。

然后将预测样本作为下一个训练数据集的一部分包括在内,并对后续样本进行预测。

Python中交叉验证的方法有哪些

优点:

  • 最好的技术之一。

缺点:

  • 不适用于其他数据类型的验证:与其他技术一样,我们选择随机样本作为训练或验证集,但在该技术中数据的顺序非常重要。

代码片段:

import numpy as npfrom sklearn.model_selection import TimeSeriesSplitX = np.array([[1, 2], [3, 4], [1, 2], [3, 4], [1, 2], [3, 4]])y = np.array([1, 2, 3, 4, 5, 6])time_series = TimeSeriesSplit()print(time_series)for train_index, test_index in time_series.split(X):    print("TRAIN:", train_index, "TEST:", test_index)    X_train, X_test = X[train_index], X[test_index]    y_train, y_test = y[train_index], y[test_index]

关于“Python中交叉验证的方法有哪些”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注编程网行业资讯频道,小编每天都会为大家更新不同的知识点。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python中交叉验证的方法有哪些

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python中交叉验证的方法有哪些

这篇文章主要介绍“Python中交叉验证的方法有哪些”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python中交叉验证的方法有哪些”文章能帮助大家解决问题。一、什么是交叉验证?交叉验证是一种用于估
2023-06-29

Python实现验证回文串的方法有哪些

这篇文章主要介绍了Python实现"验证回文串"的方法有哪些,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。python可以做什么Python是一种编程语言,内置了许多有效的工
2023-06-14

python中有哪些赋值和交换的方法

这篇文章给大家介绍python中有哪些赋值和交换的方法,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。python是什么意思Python是一种跨平台的、具有解释性、编译性、互动性和面向对象的脚本语言,其最初的设计是用于编
2023-06-14

python实现二叉搜索树的方法有哪些

这篇文章主要介绍“python实现二叉搜索树的方法有哪些”,在日常操作中,相信很多人在python实现二叉搜索树的方法有哪些问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”python实现二叉搜索树的方法有哪些
2023-07-06

python中有哪些类型的二叉树

python中有哪些类型的二叉树?针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。python的五大特点是什么python的五大特点:1.简单易学,开发程序时,专注的是解决问题
2023-06-14

javascript表单是否为空的验证方法有哪些

这篇文章给大家分享的是有关javascript表单是否为空的验证方法有哪些的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。表单验证拿到表单内容进行非空验证(单独函数封装,方便后面调用)为空则向P里面加内容要阻断表单
2023-06-29

Flutter验证码输入框的实现方法有哪些

Flutter验证码输入框的实现方法有哪些,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。重点是什么?真实世界的 完美的验证码输入框或 PIN 输入 UI 通常满
2023-06-22

python中进程有哪些交流方式

python中进程有哪些交流方式?相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。python的五大特点是什么python的五大特点:1.简单易学,开发程序时,专注的是解决问题,而
2023-06-14

Java中二叉树遍历的常用方法有哪些

这篇文章给大家分享的是有关Java中二叉树遍历的常用方法有哪些的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。采用前序遍历、中序遍历、后续遍历实现时,即便采用不同的实现方式(递归方式、非递归),它们的算法结构是有很
2023-06-15

Python爬虫遇到验证码的处理方式有哪些

这篇文章主要介绍“Python爬虫遇到验证码的处理方式有哪些”,在日常操作中,相信很多人在Python爬虫遇到验证码的处理方式有哪些问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Python爬虫遇到验证码的处
2023-06-16

SpringBoot中参数校验的方法有哪些

这篇文章给大家分享的是有关SpringBoot中参数校验的方法有哪些的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。一、前言在 Web 开发中经常需要对前端传过来的参数进行校验,例如格式校验、非空校验等,基本上每个
2023-06-15

python中有哪些特有方法

这篇文章给大家介绍python中有哪些特有方法,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。python的五大特点是什么python的五大特点:1.简单易学,开发程序时,专注的是解决问题,而不是搞明白语言本身。2.面向
2023-06-14

Python中魔法方法有哪些

Python中魔法方法有哪些,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。Python提供的魔法方法 魔术方法这里按照不同的类别有如下分类,用个表格给大家列举出来:看完上述内容
2023-06-19

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录